Simultaneous powdered activated carbon and coagulant injection during ballasted flocculation for trace benzene removal from diesel and gasoline-contaminated surface waters

Oluchi Okoro, Kim Lompe, Isabelle Papineau, Morgan Solliec, Louis Fradette, Benoit Barbeau*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

12 Citations (Scopus)

Abstract

Subsequent to an oil spill, conventional physico-chemical treatment processes such as ballasted flocculation would serve as the principal barrier in drinking water treatment plants (DWTP) against contamination from toxic soluble contaminants such as benzene. Benzene is a well-known carcinogenic compound and its maximum threshold concentrations in drinking water are regulated at 5 μg/L and 0.5 μg/L in the United States and in Quebec, Canada, respectively. Our study focused on ballasted flocculation in order to determine its removal efficiency for traces of dissolved petroleum hydrocarbons originating from diesel and gasoline contamination. Results show that ballasted flocculation alone, using alum or ferric sulphate as coagulant, is not efficient for benzene reduction below regulations. Addition of an adsorbent such as powdered activated carbon (PAC) is necessary. From PAC adsorption isotherms and kinetics, we found an optimal dose of 80 mg PAC/L and contact times of 15 and 30 min for diesel and gasoline-contaminated waters, respectively. The simultaneous addition of PAC and coagulant during ballasted flocculation showed that although benzene concentration declined substantially, alum treatment could not decrease concentrations below the Canadian threshold (0.5 μg/L) while the US regulation value was met. Analysis of PAC-ballasted flocculation tests demonstrated the likelihood of PAC pore blockage in the presence of coagulants. Although PAC doses as high as 80 mg PAC/L were introduced during ballasted flocculation, settled water quality was not negatively impacted. Findings from this study will help DWTP in their effort to prepare emergency response plans for the event of an oil spill.

Original languageEnglish
Article number101846
Pages (from-to)1-10
Number of pages10
JournalJournal of Water Process Engineering
Volume40
DOIs
Publication statusPublished - 2021

Keywords

  • Ballasted flocculation
  • Benzene
  • Drinking water production
  • Oil spill
  • Powdered activated carbon (PAC)

Fingerprint

Dive into the research topics of 'Simultaneous powdered activated carbon and coagulant injection during ballasted flocculation for trace benzene removal from diesel and gasoline-contaminated surface waters'. Together they form a unique fingerprint.

Cite this