TY - JOUR
T1 - Single sediment dynamics in turbulent flow over a porous bed - Insights from interface-resolved simulations
AU - Youse, Ali
AU - Costa, Pedro
AU - Brandt, Luca
PY - 2020
Y1 - 2020
N2 - We use interface-resolved direct numerical simulations to study the dynamics of a single sediment particle in a turbulent open channel flow over a fixed porous bed. The relative strength of the gravitational acceleration, quantified by the Galileo number, is varied so as to reproduce the different modes of sediment transport - resuspension, saltation and rolling. The results show that the sediment dynamics at lower Galileo numbers (i.e.resuspension and saltation) are mainly governed by the mean flow. Here, the regime of motion can be predicted by the ratio between the gravity and the shear-induced boundary force. In these cases, the sediment particle rapidly takes off when exposed to the flow, and proceeds with an oscillatory motion. Increasing the Galileo number, the frequency of these oscillations increases and their amplitude decreases, until the transport mode switches from resuspension to saltation. In this case, the sediment travels by short successive collisions with the bed. Further increasing the Galileo number, the particle rolls without detaching from the bed. Differently from the previous modes, the motion is triggered by extreme turbulent events, and the particle response depends on the specific initial conditions, at fixed Reynolds number. The results reveal that close to the onset of sediment motion, only turbulent sweeps can effectively trigger the particle motion by increasing the stagnation pressure upstream. We show that for the parameters in this study, a criterion based on the streamwise flow-induced force can successfully predict the incipient movement.
AB - We use interface-resolved direct numerical simulations to study the dynamics of a single sediment particle in a turbulent open channel flow over a fixed porous bed. The relative strength of the gravitational acceleration, quantified by the Galileo number, is varied so as to reproduce the different modes of sediment transport - resuspension, saltation and rolling. The results show that the sediment dynamics at lower Galileo numbers (i.e.resuspension and saltation) are mainly governed by the mean flow. Here, the regime of motion can be predicted by the ratio between the gravity and the shear-induced boundary force. In these cases, the sediment particle rapidly takes off when exposed to the flow, and proceeds with an oscillatory motion. Increasing the Galileo number, the frequency of these oscillations increases and their amplitude decreases, until the transport mode switches from resuspension to saltation. In this case, the sediment travels by short successive collisions with the bed. Further increasing the Galileo number, the particle rolls without detaching from the bed. Differently from the previous modes, the motion is triggered by extreme turbulent events, and the particle response depends on the specific initial conditions, at fixed Reynolds number. The results reveal that close to the onset of sediment motion, only turbulent sweeps can effectively trigger the particle motion by increasing the stagnation pressure upstream. We show that for the parameters in this study, a criterion based on the streamwise flow-induced force can successfully predict the incipient movement.
KW - multiphase flow
KW - particle/fluid flow
KW - sediment transport
UR - http://www.scopus.com/inward/record.url?scp=85083896963&partnerID=8YFLogxK
U2 - 10.1017/jfm.2020.242
DO - 10.1017/jfm.2020.242
M3 - Article
AN - SCOPUS:85083896963
VL - 893
JO - Journal of Fluid Mechanics
JF - Journal of Fluid Mechanics
SN - 0022-1120
M1 - A24
ER -