Abstract
In most naturally occurring superconductors, electrons with opposite spins form Cooper pairs. This includes both conventional s-wave superconductors such as aluminium, as well as high-transition-temperature, d-wave superconductors. Materials with intrinsic p-wave superconductivity, hosting Cooper pairs made of equal-spin electrons, have not been conclusively identified, nor synthesized, despite promising progress1–3. Instead, engineered platforms where s-wave superconductors are brought into contact with magnetic materials have shown convincing signatures of equal-spin pairing4–6. Here we directly measure equal-spin pairing between spin-polarized quantum dots. This pairing is proximity-induced from an s-wave superconductor into a semiconducting nanowire with strong spin–orbit interaction. We demonstrate such pairing by showing that breaking a Cooper pair can result in two electrons with equal spin polarization. Our results demonstrate controllable detection of singlet and triplet pairing between the quantum dots. Achieving such triplet pairing in a sequence of quantum dots will be required for realizing an artificial Kitaev chain7–9.
Original language | English |
---|---|
Pages (from-to) | 448-453 |
Number of pages | 6 |
Journal | Nature |
Volume | 612 |
Issue number | 7940 |
DOIs | |
Publication status | Published - 2022 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.