SPAD imagers for super resolution microscopy

Michel Antolovic

    Research output: ThesisDissertation (TU Delft)

    461 Downloads (Pure)

    Abstract

    The aim of this research is to explore the potential advantages of SPAD imagers used in microscopy. An ideal microscopy detector requires high sensitivity (high quantum efficiency QE or photon detection probability PDP), photon counting operation, low noise (dark current or dark count rate), timing resolution in the order of 100 ps, frame rate higher than 10 fps, a large enough pixel resolution and wavelength resolvability.
    Original languageEnglish
    QualificationDoctor of Philosophy
    Awarding Institution
    • Delft University of Technology
    Supervisors/Advisors
    • Charbon-Iwasaki-Charbon, E., Supervisor
    • Hoebe, RA, Advisor, External person
    Award date23 Jan 2018
    DOIs
    Publication statusPublished - 2018

    Bibliographical note

    Ivan Michel Antolović received his B.S. and M.S. degree (cum laude) in electrical engineering and information technology in 2010 and 2012 from University of Zagreb, Croatia. During his master, he started working with Hamamatsu’s multi-pixel photon counters (MPPC), mainly interested in detection of collagen and estrogen autofluorescence. He was awarded "Josip Lončar" Bronze Plaque for the best student of the field electronic and computing engineering. He enrolled to a PhD at the University of Zagreb while working as a firmware designer at Artronic d.o.o. Since 2013, he continued to pursue a PhD degree in single photon avalanche diode (SPAD) imagers at TU Delft. His interests include large format photon counting SPAD imagers and small format time correlated SPAD imagers for microscopy applications like localization super resolution, confocal and fluorescence lifetime. During his PhD, he worked in collaboration with EPFL, Leeuwenhoek Centre for Advanced Microscopy, Macquarie University, Weizmann Institute. He worked with companies like Leica, LFoundry, NXP, TowerJazz and Zeiss. He was awarded PicoQuant Young Investigator Award in 2016 and Else Kooi Award in 2018.

    Keywords

    • SPAD
    • microscopy
    • super resolution
    • fluorescence imaging
    • imagers
    • photon counting and image sensor

    Fingerprint

    Dive into the research topics of 'SPAD imagers for super resolution microscopy'. Together they form a unique fingerprint.

    Cite this