Spatial optimization of circular timber hubs

Tanya Tsui*, Titus Venverloo, Tom Benson, Fábio Duarte

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

13 Downloads (Pure)


In the European Union, construction is responsible for 36% of CO2 emissions and 40% energy consumption. The reuse of construction materials has been receiving increasing attention, including regulations established by the European Union, and cities establishing goals to reuse construction materials. This is the case for Amsterdam, which established the goal of reusing 50% of construction materials in new construction by 2030. Part of the challenge of reuse of construction materials in urban areas is to optimize the waste-to-resource loops: finding the optimal scale and location for circular construction hubs—facilities that collect, store, and redistribute construction waste as secondary construction materials. In this paper, we use the supply and demand of timber construction materials in Amsterdam as a case study to find the optimal scale and location for construction hubs. We used the spatial simulated annealing algorithm as an optimization method for balancing the trade-off between small and large-scale hubs, using cost-effectiveness to compare potential locations and identify the optimal solution. We found that the optimal number of hubs for our study area is 29, with an average service radius of 3 km. This study has implications for policymakers, urban planners, and companies seeking to implement circular economy principles.

Original languageEnglish
Article number13
Number of pages9
Journalnpj Urban Sustainability
Issue number1
Publication statusPublished - 2024


Dive into the research topics of 'Spatial optimization of circular timber hubs'. Together they form a unique fingerprint.

Cite this