Spatially scalable recursive estimation of Gaussian process terrain maps using local basis functions

Frida Viset*, Rudy Helmons, Manon Kok

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

Abstract

We address the computational challenges of large-scale geospatial mapping with Gaussian process (GP) regression by performing localized computations rather than processing the entire map simultaneously. Traditional approaches to GP regression often involve computational and storage costs that either scale with the number of measurements, or with the spatial extent of the mapped area, limiting their scalability for real-time applications. Our method places a global grid of finite-support basis functions and restricts computations to a local subset of the grid 1) surrounding the measurement when the map is updated, and 2) surrounding the query point when the map is queried. This localized approach ensures that only the relevant area is updated or queried at each timestep, significantly reducing computational complexity while maintaining accuracy. Unlike many existing methods, which suffer from boundary effects or increased computational costs with mapped area, our localized approach avoids discontinuities and ensures that computational costs remain manageable regardless of map size. This approximation to GP mapping provides high accuracy with limited computational budget for the specialized task of performing fast online map updates and fast online queries of large-scale geospatial maps. It is therefore a suitable approximation for use in real-time applications where such properties are desirable, such as real-time simultaneous localization and mapping (SLAM) in large, nonlinear geospatial fields. We show on experimental data with magnetic field measurements that our algorithm is faster and equally accurate compared to existing methods, both for recursive magnetic field mapping and for magnetic field SLAM.

Original languageEnglish
Pages (from-to)1444-1453
Number of pages10
JournalIEEE Transactions on Signal Processing
Volume73
DOIs
Publication statusPublished - 2025

Bibliographical note

Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Keywords

  • Gaussian processes
  • Kalman filters
  • simultaneous localization and mapping
  • terrain navigation

Fingerprint

Dive into the research topics of 'Spatially scalable recursive estimation of Gaussian process terrain maps using local basis functions'. Together they form a unique fingerprint.

Cite this