Abstract
This study introduces the Spatio-Temporal Attention Enhanced Encoder-Decoder Damage Prediction Network (STAE-EDDPNet), an innovative deep learning model designed to enhance the predictive capabilities of coal-rock damage infrared temperature fields, which is crucial for the safe production in rock engineering and mining engineering. STAE-EDDPNet integrates a spatio-temporal attention mechanism, significantly improving the capture of complex nonlinear spatio-temporal information in rock infrared radiation. Compared with baseline models such as 3DCNN, ConvLSTM, and EDDPNet, STAE-EDDPNet demonstrated superior performance in both single-step and multi-step forecasting tasks. Test set results show that its predictive accuracy is 25.56% higher than 3DCNN, 5.69% higher than ConvLSTM, and 0.19% higher than EDDPNet. The study also found that the characteristics of brittle failure rock data significantly affect model training and predictive performance, providing a direction for future data collection and experimental design improvements. The introduction of STAE-EDDPNet not only promotes the application of infrared monitoring technology in the field of safety monitoring but also provides valuable reference for rock damage early warning.
Original language | English |
---|---|
Article number | 110811 |
Number of pages | 21 |
Journal | Engineering Fracture Mechanics |
Volume | 315 |
DOIs | |
Publication status | Published - 2025 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- Coal and rock damage prediction and early warning
- Infrared radiation monitoring
- Spatio-temporal feature extraction
- Spatio-temporal prediction