TY - JOUR
T1 - Spectral analysis of the Moore-Penrose inverse of a large dimensional sample covariance matrix
AU - Bodnar, Taras
AU - Dette, Holger
AU - Parolya, Nestor
PY - 2016/6/1
Y1 - 2016/6/1
N2 - For a sample of n independent identically distributed p-dimensional centered random vectors with covariance matrix σn let S~n denote the usual sample covariance (centered by the mean) and Sn the non-centered sample covariance matrix (i.e. the matrix of second moment estimates), where p>n. In this paper, we provide the limiting spectral distribution and central limit theorem for linear spectral statistics of the Moore-Penrose inverse of Sn and S~n. We consider the large dimensional asymptotics when the number of variables p→∞ and the sample size n→∞ such that p/n→c∈(1, +∞). We present a Marchenko-Pastur law for both types of matrices, which shows that the limiting spectral distributions for both sample covariance matrices are the same. On the other hand, we demonstrate that the asymptotic distribution of linear spectral statistics of the Moore-Penrose inverse of S~n differs in the mean from that of Sn.
AB - For a sample of n independent identically distributed p-dimensional centered random vectors with covariance matrix σn let S~n denote the usual sample covariance (centered by the mean) and Sn the non-centered sample covariance matrix (i.e. the matrix of second moment estimates), where p>n. In this paper, we provide the limiting spectral distribution and central limit theorem for linear spectral statistics of the Moore-Penrose inverse of Sn and S~n. We consider the large dimensional asymptotics when the number of variables p→∞ and the sample size n→∞ such that p/n→c∈(1, +∞). We present a Marchenko-Pastur law for both types of matrices, which shows that the limiting spectral distributions for both sample covariance matrices are the same. On the other hand, we demonstrate that the asymptotic distribution of linear spectral statistics of the Moore-Penrose inverse of S~n differs in the mean from that of Sn.
KW - CLT
KW - Large-dimensional asymptotics
KW - Moore-Penrose inverse
KW - Random matrix theory
UR - http://www.scopus.com/inward/record.url?scp=84962762555&partnerID=8YFLogxK
U2 - 10.1016/j.jmva.2016.03.001
DO - 10.1016/j.jmva.2016.03.001
M3 - Article
AN - SCOPUS:84962762555
SN - 0047-259X
VL - 148
SP - 160
EP - 172
JO - Journal of Multivariate Analysis
JF - Journal of Multivariate Analysis
ER -