Stability of an Idealized Floating Carpet of Plastic Spheres in an Open Channel Flow

Research output: Contribution to journalArticleScientificpeer-review

Abstract

Plastic debris can accumulate at hydraulic structures and waste-collection devices, leading to a so-called floating carpet formation. Understanding the accumulation of plastic debris at structures is pivotal in the prediction of increased flood risk and design of waste-collection devices. In this research, we studied the stability of plastic carpets under different flow conditions using laboratory experiments, and we developed analytical models to predict critical velocities that led to two instabilities: (1) squeezing—particles inside the carpet are pushed downward due to cumulative compressive force, and (2) erosion—particles at the upstream edge of the carpet mobilize completely. Velocities of the fully developed flow were measured under a stable carpet to estimate boundary shear stress, which was applied to calculate the compressive force of the particles. Using measured flow velocity data and particle’s properties, the critical flow velocities that led to instabilities were calculated. Overall, this research supports a better understanding of physical processes associated with plastic accumulation, supporting the development of optimized plastic removal strategies.
Original languageEnglish
Article number04025010
Number of pages14
JournalJournal of Hydraulic Engineering
Volume151
Issue number4
DOIs
Publication statusPublished - 2025

Bibliographical note

Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Fingerprint

Dive into the research topics of 'Stability of an Idealized Floating Carpet of Plastic Spheres in an Open Channel Flow'. Together they form a unique fingerprint.

Cite this