Stability of Swept Wing Boundary Layers under Non-Adiabatic Wall Conditions

M. Barahona Lopez*, A.F. van de Weijer, A.F. Rius Vidales, M. Kotsonis

*Corresponding author for this work

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

76 Downloads (Pure)

Abstract

One of the most critical technological challenges embedded in the electrification of future aircraft revolves around the thermal management of batteries and fuel cells. An innovative idea involves using the aircraft’s aerodynamic surfaces to dissipate the extra heat, thereby reducing the impact that traditional thermal management systems (e.g. ram air heat exchanger) have on the overall aerodynamic efficiency of the aircraft. However, the limited experimental research addressing the influence of a heated surface on the stability and transition of the crossflow instability (CFI) hinders the assessment of the aerodynamic impact of this technology for future aircraft, where swept wings are ubiquitous. Thus, the objective of this work is to experimentally study the effect of a heated wall on the stability and final breakdown of CF vortices. To do so, experiments are conducted on a 45◦ swept flat plate wind tunnel model, where the surface temperature is increased by means of a surface-embedded electrical heater, yielding a mean wall-temperature ratio of T_w/T_infty = 1.055. Overall, the experimental (i.e. HWA) and numerical (i.e. CLST) results show that wall heating leads to significant destabilization of the stationary CFI. Interestingly, a spectral analysis of the HWA signal reveals substantial amplification of the traveling CF mode under wall-heating conditions, which in turn appears significantly more destabilized than the stationary CF mode. Additionally, inspection of the high-frequency content in the HWA measurements indicates premature breakdown of the CF vortices and advancement of the laminar-turbulent transition by 6.3% with wall heating. The results presented in this work render a first insight into the impact of a non-adiabatic wall on the development of the crossflow instability and subsequent breakdown to turbulence.
Original languageEnglish
Title of host publicationProceedings of the AIAA SCITECH 2024 Forum
PublisherAmerican Institute of Aeronautics and Astronautics Inc. (AIAA)
Number of pages20
ISBN (Electronic)978-1-62410-711-5
DOIs
Publication statusPublished - 2024
EventAIAA SCITECH 2024 Forum - Orlando, United States
Duration: 8 Jan 202412 Jan 2024

Conference

ConferenceAIAA SCITECH 2024 Forum
Country/TerritoryUnited States
CityOrlando
Period8/01/2412/01/24

Fingerprint

Dive into the research topics of 'Stability of Swept Wing Boundary Layers under Non-Adiabatic Wall Conditions'. Together they form a unique fingerprint.

Cite this