TY - JOUR
T1 - Static friction of sinusoidal surfaces
T2 - a discrete dislocation plasticity analysis
AU - Ng Wei Siang, Kelvin
AU - Nicola, Lucia
PY - 2017
Y1 - 2017
N2 - Discrete dislocation plasticity simulations are carried out to investigate the static frictional response of sinusoidal asperities with (sub)-microscale wavelength. The surfaces are first flattened and then sheared by a perfectly adhesive platen. Both bodies are explicitly modelled, and the external loading is applied on the top surface of the platen. Plastic deformation by dislocation glide is the only dissipation mechanism active. The tangential force obtained at the contact when displacing the platen horizontally first increases with applied displacement, then reaches a constant value. This constant is here taken to be the friction force. In agreement with several experiments and continuum simulation studies, the friction coefficient is found to decrease with the applied normal load. However, at odds with continuum simulations, the friction force is also found to decrease with the normal load. The decrease is caused by an increased availability of dislocations to initiate and sustain plastic flow during shearing. Again in contrast to continuum studies, the friction coefficient is found to vary stochastically across the contact surface, and to reach locally values up to several times the average friction coefficient. Moreover, the friction force and the friction coefficient are found to be size-dependent.
AB - Discrete dislocation plasticity simulations are carried out to investigate the static frictional response of sinusoidal asperities with (sub)-microscale wavelength. The surfaces are first flattened and then sheared by a perfectly adhesive platen. Both bodies are explicitly modelled, and the external loading is applied on the top surface of the platen. Plastic deformation by dislocation glide is the only dissipation mechanism active. The tangential force obtained at the contact when displacing the platen horizontally first increases with applied displacement, then reaches a constant value. This constant is here taken to be the friction force. In agreement with several experiments and continuum simulation studies, the friction coefficient is found to decrease with the applied normal load. However, at odds with continuum simulations, the friction force is also found to decrease with the normal load. The decrease is caused by an increased availability of dislocations to initiate and sustain plastic flow during shearing. Again in contrast to continuum studies, the friction coefficient is found to vary stochastically across the contact surface, and to reach locally values up to several times the average friction coefficient. Moreover, the friction force and the friction coefficient are found to be size-dependent.
KW - contact
KW - Discrete dislocation plasticity
KW - friction
KW - size effect
UR - http://resolver.tudelft.nl/uuid:1fc14b5e-27ba-427c-a226-e7965dc09328
UR - http://www.scopus.com/inward/record.url?scp=85023782899&partnerID=8YFLogxK
U2 - 10.1080/14786435.2017.1344785
DO - 10.1080/14786435.2017.1344785
M3 - Article
AN - SCOPUS:85023782899
VL - 97
SP - 2597
EP - 2614
JO - Philosophical Magazine (London, 2003)
JF - Philosophical Magazine (London, 2003)
SN - 1478-6435
IS - 29
ER -