Abstract
Block coordinate descent is an optimization technique that is used for estimating multi-input single-output (MISO) continuous-time models, as well as single-input single output (SISO) models in additive form. Despite its widespread use in various optimization contexts, the statistical properties of block coordinate descent in continuous-time system identification have not been covered in the literature. The aim of this letter is to formally analyze the bias properties of the block coordinate descent approach for the identification of MISO and additive SISO systems. We characterize the asymptotic bias at each iteration, and provide sufficient conditions for the consistency of the estimator for each identification setting. The theoretical results are supported by simulation examples.
Original language | English |
---|---|
Pages (from-to) | 388-393 |
Number of pages | 6 |
Journal | IEEE Control Systems Letters |
Volume | 8 |
DOIs | |
Publication status | Published - 2024 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- additive models
- block coordinate descent
- Continuous-time system identification
- MISO models