Statistics and simulation of growth of single bacterial cells: Illustrations with B. subtilis and E. coli

Johan H. Van Heerden, Hermannus Kempe, Anne Doerr, Timo Maarleveld, Niclas Nordholt, Frank J. Bruggeman

Research output: Contribution to journalArticleScientificpeer-review

11 Citations (Scopus)
31 Downloads (Pure)

Abstract

The inherent stochasticity of molecular reactions prevents us from predicting the exact state of single-cells in a population. However, when a population grows at steady-state, the probability to observe a cell with particular combinations of properties is fixed. Here we validate and exploit existing theory on the statistics of single-cell growth in order to predict the probability of phenotypic characteristics such as cell-cycle times, volumes, accuracy of division and cell-age distributions, using real-time imaging data for Bacillus subtilis and Escherichia coli. Our results show that single-cell growth-statistics can accurately be predicted from a few basic measurements. These equations relate different phenotypic characteristics, and can therefore be used in consistency tests of experimental single-cell growth data and prediction of single-cell statistics. We also exploit these statistical relations in the development of a fast stochastic-simulation algorithm of single-cell growth and protein expression. This algorithm greatly reduces computational burden, by recovering the statistics of growing cell-populations from the simulation of only one of its lineages. Our approach is validated by comparison of simulations and experimental data. This work illustrates a methodology for the prediction, analysis and tests of consistency of single-cell growth and protein expression data from a few basic statistical principles.

Original languageEnglish
Article number16094
Number of pages11
JournalScientific Reports
Volume7
Issue number1
DOIs
Publication statusPublished - 2017

Fingerprint Dive into the research topics of 'Statistics and simulation of growth of single bacterial cells: Illustrations with B. subtilis and E. coli'. Together they form a unique fingerprint.

  • Cite this

    Van Heerden, J. H., Kempe, H., Doerr, A., Maarleveld, T., Nordholt, N., & Bruggeman, F. J. (2017). Statistics and simulation of growth of single bacterial cells: Illustrations with B. subtilis and E. coli. Scientific Reports, 7(1), [16094]. https://doi.org/10.1038/s41598-017-15895-4