Strain-based delamination prediction in fatigue loaded CFRP coupon specimens by deep learning and static loading data

Demetrio Cristiani*, Francesco Falcetelli, Nan Yue, Claudio Sbarufatti, Raffaella Di Sante, Dimitrios Zarouchas, Marco Giglio

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

18 Citations (Scopus)
46 Downloads (Pure)

Abstract

Machine learning (ML) methods for the structural health monitoring (SHM) of composite structures rely on sufficient domain knowledge as they typically demand to extract damage-sensitive features from raw data before training the ML model. In practice, prior knowledge is not available in most cases. Deep learning (DL) methods, on the other hand, can obtain higher-level features from raw input data and have proven superior in several applications. This paper proposes a Convolutional Neural Network (CNN) based approach for the delamination prediction in CFRP double cantilever beam (DCB) specimens using raw local array strain measurements via distributed optical fiber sensors. The conventional CNN architecture is modified to perform regression, as the delamination size is a continuous value. 1D and 2D CNN architectures are deployed and compared and different techniques are exploited to encode 1D spatial strain pattern series as 2D images. Raw strain patterns collected during static testing are used to train the CNNs, while testing is performed on unseen raw fatigue strain patterns, showing the CNN ability to automatically extract discriminative features from the non-pre-processed static strain pattern-based signals that generalize to raw fatigue signals as well. This strategy has the potential to reduce fatigue testing expenditures while also shortening the time required to gather training data.

Original languageEnglish
Article number110020
Number of pages12
JournalComposites Part B: Engineering
Volume241
DOIs
Publication statusPublished - 2022

Bibliographical note

Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Keywords

  • A. prepreg
  • B. delamination
  • B. fatigue
  • Convolutional neural network

Fingerprint

Dive into the research topics of 'Strain-based delamination prediction in fatigue loaded CFRP coupon specimens by deep learning and static loading data'. Together they form a unique fingerprint.

Cite this