Strong photon coupling to the quadrupole moment of an electron in a solid-state qubit

J. V. Koski*, A. J. Landig, M. Russ, J. C. Abadillo-Uriel, P. Scarlino, B. Kratochwil, C. Reichl, W. Wegscheider, Guido Burkard, More Authors

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

8 Citations (Scopus)


The fundamental concept of light–matter interaction is routinely realized by coupling the quantized electric field in a cavity to the dipole moment of a real or an artificial atom. A recent proposal1,2, motivated by the prospect of overcoming the decohering effects of distant charge fluctuations, suggests that introduction of and coupling to an electric quadrupole moment of a single electron can be achieved by confining it in a triple quantum dot. Here, we show an experimental realization of this concept by connecting a superconducting microwave resonator to the middle of the three dots, such that the dipole coupling becomes negligible. We demonstrate strong coupling to the electron quadrupole moment and determine that the coherence of our system is limited by short-range charge noise. Our experiment enables the construction and detection of a complex electronic state of a single electron in a solid-state environment that does not exist as such for a free electron.

Original languageEnglish
Pages (from-to)642-646
JournalNature Physics
Issue number6
Publication statusPublished - 2020
Externally publishedYes


Dive into the research topics of 'Strong photon coupling to the quadrupole moment of an electron in a solid-state qubit'. Together they form a unique fingerprint.

Cite this