Structural biology of microbial gas vesicles: historical milestones and current knowledge

Stefan T. Huber, Arjen J. Jakobi*

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

43 Downloads (Pure)

Abstract

Gas vesicles mediate buoyancy-based motility in aquatic bacteria and archaea and are the only protein-based structures known to enclose a gas-filled volume. Their unique physicochemical properties and ingenious architecture rank them among the most intriguing macromolecular assemblies characterised to date. This review covers the 60-year journey in quest for a high-resolution structural model of gas vesicles, first highlighting significant strides made in establishing the detailed ultrastructure of gas vesicles through transmission electron microscopy, X-ray fibre diffraction, atomic force microscopy, and NMR spectroscopy. We then survey the recent progress in cryogenic electron microscopy studies of gas vesicles, which eventually led to a comprehensive atomic model of the mature assembly. Synthesising insight from these structures, we examine possible mechanisms of gas vesicle biogenesis and growth, presenting a testable model to guide future experimental work. We conclude by discussing future directions in the structural biology of gas vesicles, particularly considering advancements in AI-driven structure prediction.

Original languageEnglish
Pages (from-to)205-215
JournalBiochemical Society Transactions
Volume2024
DOIs
Publication statusPublished - 2024

Fingerprint

Dive into the research topics of 'Structural biology of microbial gas vesicles: historical milestones and current knowledge'. Together they form a unique fingerprint.

Cite this