TY - JOUR
T1 - Study of Mercaptobenzimidazoles As Inhibitors for Copper Corrosion
T2 - Down to the Molecular Scale
AU - Neupane, Shova
AU - Losada-Pérez, Patricia
AU - Tiringer, Urša
AU - Taheri, Peyman
AU - Desta, Derese
AU - Xie, Chenyang
AU - Crespo, Daniel
AU - Mol, Arjan
AU - Milošev, Ingrid
AU - Kokalj, Anton
AU - Renner, Frank Uwe
PY - 2021
Y1 - 2021
N2 - The initiation of corrosion can be triggered by defects in the adsorbed layer of organic inhibitors. A detailed knowledge of the intermolecular forces between the inhibitor molecules and the interfacial bonding will be decisive to unravel the mechanisms driving the corrosion initiation. In this work, adsorbed organic layers of 2-mercapto-5-methoxybenzimidazole (SH-BimH-5OMe) and 5-amino-2-mercaptobenzimidazole (SH-BimH-5NH2) were compared regarding their performance mitigating copper corrosion. Atomic force microscopy was used to address the stability and intermolecular forces of the self-assembled monolayers, using imaging and force measurement modes. For a film formed by amino-derivative molecules, a gold-coated tip frequently picked up individual molecules (molecular fishing) in force-distance measurements. For layers of the methoxy-derivative, no fishing events were observed, pointing to a constant functional layer. X-ray photoelectron spectroscopy revealed that SH-BimH-5OMe molecules form a stronger bond with the surface and more stable SAM layers on Cu surfaces as compared to SH-BimH-5NH2 molecules. Results of computational density functional theory modeling and electrochemical corrosion tests are in line with the microscopy and spectroscopy results. In particular, with aid of computational modeling the less ordered structure of the SH-BimH-5NH2 monolayer is attributed to dual bonding ability of SH-BimH-5NH2 that can adsorb with either S or NH2 groups.
AB - The initiation of corrosion can be triggered by defects in the adsorbed layer of organic inhibitors. A detailed knowledge of the intermolecular forces between the inhibitor molecules and the interfacial bonding will be decisive to unravel the mechanisms driving the corrosion initiation. In this work, adsorbed organic layers of 2-mercapto-5-methoxybenzimidazole (SH-BimH-5OMe) and 5-amino-2-mercaptobenzimidazole (SH-BimH-5NH2) were compared regarding their performance mitigating copper corrosion. Atomic force microscopy was used to address the stability and intermolecular forces of the self-assembled monolayers, using imaging and force measurement modes. For a film formed by amino-derivative molecules, a gold-coated tip frequently picked up individual molecules (molecular fishing) in force-distance measurements. For layers of the methoxy-derivative, no fishing events were observed, pointing to a constant functional layer. X-ray photoelectron spectroscopy revealed that SH-BimH-5OMe molecules form a stronger bond with the surface and more stable SAM layers on Cu surfaces as compared to SH-BimH-5NH2 molecules. Results of computational density functional theory modeling and electrochemical corrosion tests are in line with the microscopy and spectroscopy results. In particular, with aid of computational modeling the less ordered structure of the SH-BimH-5NH2 monolayer is attributed to dual bonding ability of SH-BimH-5NH2 that can adsorb with either S or NH2 groups.
UR - http://www.scopus.com/inward/record.url?scp=85106047621&partnerID=8YFLogxK
U2 - 10.1149/1945-7111/abf9c3
DO - 10.1149/1945-7111/abf9c3
M3 - Article
AN - SCOPUS:85106047621
SN - 0013-4651
VL - 168
JO - Journal of the Electrochemical Society
JF - Journal of the Electrochemical Society
IS - 5
M1 - 051504
ER -