Supersonic Flutter and Buckling Optimization of Tow Steered Composite Plates

Thiago A.M. Guimarães, Saullo Giovani Pereira Castro, Carlos E. S. Cesnik, Domingos A. Rade

Research output: Contribution to journalArticleScientificpeer-review

12 Citations (Scopus)
69 Downloads (Pure)

Abstract

The supersonic aeroelastic stability of tow-steered carbon reinforced composite panels, in each layer of which the fibers follow curvilinear paths, is assessed.Astructural model based on the Rayleigh–Ritz method, combined with the aerodynamic piston theory, is derived to represent the aeroelastic behavior of rectangular plates under different boundary conditions. In this model, the classical lamination theory, considering a symmetric stacking sequence and fiber trajectories described by Lagrange polynomials of different orders, is used. In addition, manufacturing constraints, which impose limitations to the feasible fiber trajectories, and the effect of in-plane loads are considered in the model. Using a multicriteria differential evolution algorithm, numerical optimization is performed for a variety of scenarios and aimed at increasing the flutter and linear buckling stability margins of tow-steered plates, considering the geometrical parameters defining the fiber trajectories on the layers as design variables. The results obtained for the different optimization scenarios are compared, having a composite plate with unidirectional fibers as the baseline and aimed at evaluating the benefits achieved by the optimum tow-steered plates. The results enable quantification of the stability improvements by exploring fiber steering, which has been shown to be beneficial, even in situations in which manufacturing constraints are accounted for.
Original languageEnglish
Pages (from-to)397-407
Number of pages11
JournalAIAA Journal: devoted to aerospace research and development
Volume57
Issue number1
DOIs
Publication statusPublished - 2019

Fingerprint Dive into the research topics of 'Supersonic Flutter and Buckling Optimization of Tow Steered Composite Plates'. Together they form a unique fingerprint.

Cite this