TY - JOUR
T1 - Supporting Self-Regulated Learning in Online Learning Environments and MOOCs
T2 - A Systematic Review
AU - Wong, Jacqueline
AU - Baars, Martine
AU - Davis, Dan
AU - Van Der Zee, Tim
AU - Houben, Geert Jan
AU - Paas, Fred
PY - 2019
Y1 - 2019
N2 - Massive Open Online Courses (MOOCs) allow learning to take place anytime and anywhere with little external monitoring by teachers. Characteristically, highly diverse groups of learners enrolled in MOOCs are required to make decisions related to their own learning activities to achieve academic success. Therefore, it is considered important to support self-regulated learning (SRL) strategies and adapt to relevant human factors (e.g., gender, cognitive abilities, prior knowledge). SRL supports have been widely investigated in traditional classroom settings, but little is known about how SRL can be supported in MOOCs. Very few experimental studies have been conducted in MOOCs at present. To fill this gap, this paper presents a systematic review of studies on approaches to support SRL in multiple types of online learning environments and how they address human factors. The 35 studies reviewed show that human factors play an important role in the efficacy of SRL supports. Future studies can use learning analytics to understand learners at a fine-grained level to provide support that best fits individual learners. The objective of the paper is twofold: (a) to inform researchers, designers and teachers about the state of the art of SRL support in online learning environments and MOOCs; (b) to provide suggestions for adaptive self-regulated learning support.
AB - Massive Open Online Courses (MOOCs) allow learning to take place anytime and anywhere with little external monitoring by teachers. Characteristically, highly diverse groups of learners enrolled in MOOCs are required to make decisions related to their own learning activities to achieve academic success. Therefore, it is considered important to support self-regulated learning (SRL) strategies and adapt to relevant human factors (e.g., gender, cognitive abilities, prior knowledge). SRL supports have been widely investigated in traditional classroom settings, but little is known about how SRL can be supported in MOOCs. Very few experimental studies have been conducted in MOOCs at present. To fill this gap, this paper presents a systematic review of studies on approaches to support SRL in multiple types of online learning environments and how they address human factors. The 35 studies reviewed show that human factors play an important role in the efficacy of SRL supports. Future studies can use learning analytics to understand learners at a fine-grained level to provide support that best fits individual learners. The objective of the paper is twofold: (a) to inform researchers, designers and teachers about the state of the art of SRL support in online learning environments and MOOCs; (b) to provide suggestions for adaptive self-regulated learning support.
UR - http://www.scopus.com/inward/record.url?scp=85057451834&partnerID=8YFLogxK
U2 - 10.1080/10447318.2018.1543084
DO - 10.1080/10447318.2018.1543084
M3 - Article
AN - SCOPUS:85057451834
SN - 1044-7318
VL - 35
SP - 356
EP - 373
JO - International Journal of Human-Computer Interaction
JF - International Journal of Human-Computer Interaction
IS - 4-5
ER -