Abstract
Abandoned industrial sites could be redeveloped in a sustainable way with the help of previous experience. This paper presents a case-based reasoning (CBR) approach to support sustainable industrial site redevelopment. For a target site that needs to be redeveloped, qualitative important key concerns are identified and quantitative attributes, which are important for sustainability, are calculated. The key concerns are generated from zoning documents and the attributes are calculated from spatial data sets. Machine learning techniques are used to find the most influential attributes to determine transition forms. Similar cases from the constructed case base are retrieved based on the algorithm the authors have proposed. The North Brabant region in the Netherlands is used as a case study. A web application is presented to illustrate the approach. The e-planning method provides a straightforward way to retrieve transition forms from similarly redeveloped cases for new regional planning tasks with a focus on sustainability.
Original language | English |
---|---|
Pages (from-to) | 39-53 |
Journal | International Journal of E-Planning Research |
Volume | 6 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2017 |
Externally published | Yes |