Abstract
View Video Presentation: https://doi-org.tudelft.idm.oclc.org/10.2514/6.2021-2286.vid
Quantitative measurements of sound due to swirl-nozzle interaction are presented for the first time. In the experiment a swirl structure was generated by means of tangential injection into a steady swirl-free flow upstream from a choked convergent-divergent nozzle. Ingestion of swirl by the choked nozzle caused a mass-flow rate change, which resulted in a downstream measured acoustic response. The amplitude of this acoustic response was found to be proportional to the square of the tangential mass-flow rate used to generate swirl. This was, assuming that the upstream generated swirl intensity is proportional to the tangential injection mass-flow rate, predicted by a previously published quasi-steady model for the swirl-nozzle interaction sound source (Hirschberg, L., Hulshoff, S. J., and Bake, F., “Sound Production due to Swirl-Nozzle Interaction: Model-Based Analysis of Experiments,” AIAA Journal, Published online on Nov. 11th 2020, doi: 10.2514/1.J059669.). The tangential-injection time was varied, and found to not influence the amplitude of the acoustic response. This indicates that quasi-steady modelling remains applicable, even for smallest achievable upstream swirl structure with an axial length of ca. three upstream diameters.
Quantitative measurements of sound due to swirl-nozzle interaction are presented for the first time. In the experiment a swirl structure was generated by means of tangential injection into a steady swirl-free flow upstream from a choked convergent-divergent nozzle. Ingestion of swirl by the choked nozzle caused a mass-flow rate change, which resulted in a downstream measured acoustic response. The amplitude of this acoustic response was found to be proportional to the square of the tangential mass-flow rate used to generate swirl. This was, assuming that the upstream generated swirl intensity is proportional to the tangential injection mass-flow rate, predicted by a previously published quasi-steady model for the swirl-nozzle interaction sound source (Hirschberg, L., Hulshoff, S. J., and Bake, F., “Sound Production due to Swirl-Nozzle Interaction: Model-Based Analysis of Experiments,” AIAA Journal, Published online on Nov. 11th 2020, doi: 10.2514/1.J059669.). The tangential-injection time was varied, and found to not influence the amplitude of the acoustic response. This indicates that quasi-steady modelling remains applicable, even for smallest achievable upstream swirl structure with an axial length of ca. three upstream diameters.
Original language | English |
---|---|
Title of host publication | AIAA AVIATION 2021 FORUM |
Number of pages | 11 |
ISBN (Electronic) | 978-1-62410-610-1 |
DOIs | |
Publication status | Published - 2021 |
Event | AIAA Aviation 2021 Forum - Virtual Event Duration: 2 Aug 2021 → 6 Aug 2021 |
Publication series
Name | AIAA Aviation and Aeronautics Forum and Exposition, AIAA AVIATION Forum 2021 |
---|
Conference
Conference | AIAA Aviation 2021 Forum |
---|---|
Period | 2/08/21 → 6/08/21 |