TY - JOUR
T1 - Target-oriented least-squares reverse-time migration using Marchenko double-focusing
T2 - reducing the artefacts caused by overburden multiples
AU - Shoja, S.M. Aydin
AU - van der Neut, J.R.
AU - Wapenaar, C.P.A.
N1 - Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
PY - 2022
Y1 - 2022
N2 - Geophysicists have widely used least-squares reverse-time migration (LSRTM) to obtain high-resolution images of the subsurface. However, LSRTM is computationally expensive and it can suffer from multiple reflections. Recently, a target-oriented approach to LSRTM has been proposed, which focuses the wavefield above the target of interest. Remarkably, this approach can be helpful for imaging below complex overburdens and subsalt domains. Moreover, this approach can significantly reduce the computational burden of the problem by limiting the computational domain to a smaller area. Nevertheless, target-oriented LSRTM still needs an accurate velocity model of the overburden to focus the wavefield accurately and predict internal multiple reflections correctly. A viable alternative to an accurate velocity model for internal multiple prediction is Marchenko redatuming. This method is a novel data-driven method that can predict Green's functions at any arbitrary depth, including all orders of multiples. The only requirement for this method is a smooth background velocity model of the overburden. Moreover, with Marchenko double-focusing, one can make virtual sources and receivers at a boundary above the target and bypass the overburden. This paper proposes a new algorithm for target-oriented LSRTM, which fits the Marchenko double-focused data with predicted data. The predicted data of the proposed method is modelled by a virtual source term created by Marchenko double-focusing on a boundary above the target of interest. This virtual source term includes all the interactions between the target and the overburden. Moreover, the Marchenko double-focused data and the virtual source term are free of multiples generated in the overburden. Consequently, our target-oriented LSRTM algorithm suppresses the multiples purely generated inside the overburden. Our algorithm correctly accounts for all orders of multiples caused by the interactions between the target and the overburden, resulting in a significant reduction of the artefacts caused by the overburden internal multiple reflections and improves amplitude recovery in the target image compared to conventional LSRTM.
AB - Geophysicists have widely used least-squares reverse-time migration (LSRTM) to obtain high-resolution images of the subsurface. However, LSRTM is computationally expensive and it can suffer from multiple reflections. Recently, a target-oriented approach to LSRTM has been proposed, which focuses the wavefield above the target of interest. Remarkably, this approach can be helpful for imaging below complex overburdens and subsalt domains. Moreover, this approach can significantly reduce the computational burden of the problem by limiting the computational domain to a smaller area. Nevertheless, target-oriented LSRTM still needs an accurate velocity model of the overburden to focus the wavefield accurately and predict internal multiple reflections correctly. A viable alternative to an accurate velocity model for internal multiple prediction is Marchenko redatuming. This method is a novel data-driven method that can predict Green's functions at any arbitrary depth, including all orders of multiples. The only requirement for this method is a smooth background velocity model of the overburden. Moreover, with Marchenko double-focusing, one can make virtual sources and receivers at a boundary above the target and bypass the overburden. This paper proposes a new algorithm for target-oriented LSRTM, which fits the Marchenko double-focused data with predicted data. The predicted data of the proposed method is modelled by a virtual source term created by Marchenko double-focusing on a boundary above the target of interest. This virtual source term includes all the interactions between the target and the overburden. Moreover, the Marchenko double-focused data and the virtual source term are free of multiples generated in the overburden. Consequently, our target-oriented LSRTM algorithm suppresses the multiples purely generated inside the overburden. Our algorithm correctly accounts for all orders of multiples caused by the interactions between the target and the overburden, resulting in a significant reduction of the artefacts caused by the overburden internal multiple reflections and improves amplitude recovery in the target image compared to conventional LSRTM.
KW - Inverse theory
KW - Numerical modelling
KW - Acoustic properties
KW - Controlled source seismology
KW - Wave scattering and diffraction
UR - http://www.scopus.com/inward/record.url?scp=85150660691&partnerID=8YFLogxK
U2 - 10.1093/gji/ggac438
DO - 10.1093/gji/ggac438
M3 - Article
VL - 233
SP - 13
EP - 32
JO - Geophysical Journal International
JF - Geophysical Journal International
SN - 0956-540X
IS - 1
ER -