Temperature effects on the behaviour of liquid-laminated embedded glass connections

Efstratios Volakos*, Chris Davis, Martien Teich, Peter Lenk, Mauro Overend

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

3 Citations (Scopus)
73 Downloads (Pure)

Abstract

Embedded load-bearing laminated glass connections have gained popularity in recent years due to their mechanical performance and aesthetic appeal. However, there is a paucity of data on their structural behaviour across a range of temperatures that may arise in building applications and there is also no simplified mechanics-based model for predicting their load–displacement response. This study addresses these gaps directly through experimental pull-out tests on steel inserts encapsulated in resin-laminated glass performed at various temperatures. The experimental results confirm that the response of the resin interlayer is time / temperature-dependent which therefore significantly affects the connection behaviour. In particular, both the stiffness and strength of the connection decrease with increasing temperature. Similarly, temperature also governs the failure mechanism of the connection. Specifically, temperatures at or below ambient indoor temperature (-10 °C and + 22 ± 2 °C) result in glass fracture whereas at + 50 °C the connection fails due to insert delamination. The numerical (FE) simulations of these tests show that a complex stress/strain state is set up in the vicinity of the embedded insert which correlates well with the experimentally observed failure mechanisms at different working temperatures. Finally, the insights gained along with the data generated from the experimental and numerical work were used to develop a simple analytical tool that predicts the pull-out load–displacement response of the embedded connection at different temperatures and load durations.

Original languageEnglish
Article number115164
Number of pages13
JournalEngineering Structures
Volume274
DOIs
Publication statusPublished - 2023

Keywords

  • Analytical model
  • Experimental Tests
  • Liquid-laminated embedded connections
  • Numerical (FE) simulations
  • Temperature

Fingerprint

Dive into the research topics of 'Temperature effects on the behaviour of liquid-laminated embedded glass connections'. Together they form a unique fingerprint.

Cite this