Abstract
Temperature sensors that can operate in high-temperature and harsh environments are highly desired. However, this is a great challenge for sensing materials to operate under extreme working conditions because of oxidation and/or corrosion at high temperature. In this study, polymer-derived SiAlCN ceramics were prepared as sensing materials to overcome the abovementioned issues. A SiAlCN ceramic temperature sensor was designed and fabricated, and it performed excellent temperature-sensing properties with high accuracy, high stability, and high repeatability up to 1000 °C. Compared with traditional thermocouples, the SiAlCN ceramic sensor exhibited a faster response rate (a shorter response time). These results showed that SiAlCN ceramic is a promising sensor material for temperature measurement in high-temperature and harsh environments.
Original language | English |
---|---|
Pages (from-to) | 25277-25283 |
Number of pages | 7 |
Journal | Ceramics International |
Volume | 48 |
Issue number | 17 |
DOIs | |
Publication status | Published - 2022 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- Harsh environment
- High-temperature sensor
- Negative temperature coefficient
- Polymer-derived SiAlCN ceramics