Temporal transfer learning for ozone prediction based on CNN-LSTM model

Tuo Deng, Astrid Manders, Arjo Segers, Yanqin Bai, Hai Xiang Lin

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

1 Citation (Scopus)

Abstract

Tropospheric ozone is a secondary pollutant which can affect human health and plant growth. In this paper, we investigated transferred convolutional neural network long short-term memory (TL-CNN-LSTM) model to predict ozone concentration. Hourly CNN-LSTM model is used to extract features and predict ozone for next hour, which is superior to commonly used models in previous studies. In the daily ozone prediction model, prediction over a large time-scale requires more data, however, only limited data are available, which causes the CNN-LSTM model to fail to accurately predict. Network-based transfer learning methods based on hourly models can obtain information from smaller temporal resolution. It can reduce prediction errors and shorten run time for model training. However, for extreme cases where the amount of data is severely insufficient, transfer learning based on smaller time scale cannot improve model prediction accuracy.

Original languageEnglish
Title of host publicationICAART 2021 - Proceedings of the 13th International Conference on Agents and Artificial Intelligence
EditorsAna Paula Rocha, Luc Steels, Jaap van den Herik
PublisherSciTePress
Pages1005-1012
Number of pages8
ISBN (Electronic)9789897584848
Publication statusPublished - 2021
Event13th International Conference on Agents and Artificial Intelligence, ICAART 2021 - Virtual, Online
Duration: 4 Feb 20216 Feb 2021

Publication series

NameICAART 2021 - Proceedings of the 13th International Conference on Agents and Artificial Intelligence
Volume2

Conference

Conference13th International Conference on Agents and Artificial Intelligence, ICAART 2021
CityVirtual, Online
Period4/02/216/02/21

Keywords

  • Short-term ozone prediction
  • Transfer learning

Fingerprint

Dive into the research topics of 'Temporal transfer learning for ozone prediction based on CNN-LSTM model'. Together they form a unique fingerprint.

Cite this