Tensor-based Kernel Machines with Structured Inducing Points for Large and High-Dimensional Data

Research output: Contribution to journalConference articleScientificpeer-review

48 Downloads (Pure)

Abstract

Kernel machines are one of the most studied family of methods in machine learning. In the exact setting, training requires to instantiate the kernel matrix, thereby prohibiting their application to large-sampled data. One popular kernel approximation strategy which allows to tackle large-sampled data consists in interpolating product kernels on a set of grid-structured inducing points. However, since the number of model parameters increases exponentially with the dimensionality of the data, these methods are limited to small-dimensional datasets. In this work we lift this limitation entirely by placing inducing points on a grid and constraining the primal weights to be a low-rank Canonical Polyadic Decomposition. We derive a block coordinate descent algorithm that efficiently exploits grid-structured inducing points. The computational complexity of the algorithm scales linearly both in the number of samples and in the dimensionality of the data for any product kernel. We demonstrate the performance of our algorithm on large-scale and high-dimensional data, achieving state-of-the art results on a laptop computer. Our results show that grid-structured approaches can work in higher-dimensional problems.

Original languageEnglish
Pages (from-to)8308-8320
JournalProceedings of Machine Learning Research
Volume206
Publication statusPublished - 2023
Event26th International Conference on Artificial Intelligence and Statistics, AISTATS 2023 - Valencia, Spain
Duration: 25 Apr 202327 Apr 2023

Fingerprint

Dive into the research topics of 'Tensor-based Kernel Machines with Structured Inducing Points for Large and High-Dimensional Data'. Together they form a unique fingerprint.

Cite this