The fracture of thermosetting epoxy polymers containing silica nanoparticles

F. J. Guild, A. J. Kinloch, K. Masania, S. Sprenger, A. C. Taylor

Research output: Contribution to journalArticleScientificpeer-review

5 Citations (Scopus)

Abstract

An epoxy resin, cured with an anhydride, has been modified by the addition of silica nanoparticles. The particles were introduced via a sol-gel technique which gave a very well dispersed phase of nanosilica particles, which were about 20 nm in diameter, in the thermosetting epoxy polymer matrix. The glass transition temperature of the epoxy polymer was unchanged by the addition of the nanoparticles, but both the modulus and toughness were increased. The fracture energy increased from 77 J/m 2 for the unmodified epoxy to 212 J/m 2 for the epoxy polymer containing 20 wt.% of nanosilica. The fracture surfaces were inspected using scanning electron and atomic force microscopy, and these microscopy studies showed that the silica nanoparticles (a) initiated localised plastic shear-yield deformation bands in the epoxy polymer matrix and (b) debonded and allowed subsequent plastic void-growth of the epoxy polymer matrix. A theoretical model for these toughening micromechanisms has been proposed to confirm that these micromechanisms were indeed responsible for the increased toughness that was observed due to the presence of the silica nanoparticles in the epoxy polymer.

Original languageEnglish
Pages (from-to)137-148
Number of pages12
JournalStrength, Fracture and Complexity
Volume11
Issue number2-3
DOIs
Publication statusPublished - 1 Jan 2018
Externally publishedYes

Keywords

  • Epoxy
  • fracture
  • modelling
  • nanoparticles

Fingerprint Dive into the research topics of 'The fracture of thermosetting epoxy polymers containing silica nanoparticles'. Together they form a unique fingerprint.

Cite this