The influence of contact relaxation on underwater noise emission and seabed vibrations due to offshore vibratory pile installation

Timo Molenkamp*, Apostolos Tsouvalas, Andrei Metrikine

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

1 Citation (Scopus)
41 Downloads (Pure)

Abstract

The growing interest in offshore wind leads to an increasing number of wind farms planned to be constructed in the coming years. Installation of these piles often causes high underwater noise levels that harm aquatic life. State-of-the-art models have problems predicting the noise and seabed vibrations from vibratory pile driving. A significant reason for that is the modeling of the sediment and its interaction with the driven pile. In principle, linear vibroacoustic models assume perfect contact between pile and soil, i.e., no pile slip. In this study, this pile-soil interface condition is relaxed, and a slip condition is implemented that allows vertical motion of the pile relative to the soil. First, a model is developed which employs contact spring elements between the pile and the soil, allowing the former to move relative to the latter in the vertical direction. The developed model is then verified against a finite element software. Second, a parametric study is conducted to investigate the effect of the interface conditions on the emitted wave field. The results show that the noise generation mechanism depends strongly on the interface conditions. Third, this study concludes that models developed to predict noise emission from impact pile driving are not directly suitable for vibratory pile driving since the pile-soil interaction becomes essential for noise generation in the latter case.
Original languageEnglish
Article number1118286
Number of pages14
JournalFrontiers in Marine Science
Volume10
DOIs
Publication statusPublished - 2023

Keywords

  • underwater noise
  • offshore pile driving
  • vibratory pile driving
  • soil-structure interaction
  • particle motion
  • seabed vibrations

Fingerprint

Dive into the research topics of 'The influence of contact relaxation on underwater noise emission and seabed vibrations due to offshore vibratory pile installation'. Together they form a unique fingerprint.

Cite this