TY - JOUR

T1 - The influence of level ice on the frequency domain response of floaters

AU - Keijdener, Chris

AU - de Oliveira Barbosa, João Manuel

AU - Metrikine, Andrei V.

PY - 2017/11/1

Y1 - 2017/11/1

N2 - In this paper the effect of a nearby, semi-infinite, level ice sheet on the frequency domain response of a thin, floating, rigid body is studied using a 2D model. The ice is modeled using a dynamic Euler-Bernoulli beam and the finite depth water layer is described with the Laplace equation and the linearized Bernoulli equation. Eigenfunction matching is used to resolve the interface between the ice covered and open water regions. The body is excited by external loads, generating waves. The waves are partially reflected by the ice edge and these reflected waves influence the body's response. It is this influence that this paper focuses on. Below a certain onset frequency the amplitude of the reflected waves is insignificant and consequently the body remains unaffected by the ice. This frequency is only sensitive to the ice thickness with thinner ice resulting in a higher onset frequency. Above the onset frequency the reflected waves cause quasi-standing waves between body and ice. For frequencies at which half the wavelength of the surface wave in the water is approximately an integer multiple of the gap length, the amplitude of the standing waves is greatly amplified. This can result in (anti-)resonance depending on the phasing between the reflected waves and the body's motion.

AB - In this paper the effect of a nearby, semi-infinite, level ice sheet on the frequency domain response of a thin, floating, rigid body is studied using a 2D model. The ice is modeled using a dynamic Euler-Bernoulli beam and the finite depth water layer is described with the Laplace equation and the linearized Bernoulli equation. Eigenfunction matching is used to resolve the interface between the ice covered and open water regions. The body is excited by external loads, generating waves. The waves are partially reflected by the ice edge and these reflected waves influence the body's response. It is this influence that this paper focuses on. Below a certain onset frequency the amplitude of the reflected waves is insignificant and consequently the body remains unaffected by the ice. This frequency is only sensitive to the ice thickness with thinner ice resulting in a higher onset frequency. Above the onset frequency the reflected waves cause quasi-standing waves between body and ice. For frequencies at which half the wavelength of the surface wave in the water is approximately an integer multiple of the gap length, the amplitude of the standing waves is greatly amplified. This can result in (anti-)resonance depending on the phasing between the reflected waves and the body's motion.

KW - Frequency domain response

KW - Hydrodynamics

KW - Ice-floater interaction

KW - Level ice

UR - http://www.scopus.com/inward/record.url?scp=85032018993&partnerID=8YFLogxK

UR - http://resolver.tudelft.nl/uuid:3386dde5-8da0-4531-9178-bd1eb738d54e

U2 - 10.1016/j.coldregions.2017.09.004

DO - 10.1016/j.coldregions.2017.09.004

M3 - Article

AN - SCOPUS:85032018993

VL - 143

SP - 112

EP - 125

JO - Cold Regions Science and Technology

JF - Cold Regions Science and Technology

SN - 0165-232X

ER -