The Morphology of Simulated Trade-Wind Convection and Cold Pools Under Wind Shear

K.C. Helfer, L. Nuijens

Research output: Contribution to journalArticleScientificpeer-review

6 Citations (Scopus)
46 Downloads (Pure)

Abstract

A growing body of literature investigates convective organization, but few studies to date have sought to investigate how wind shear plays a role in the spatial organization of shallow (trade-wind) convection. The present study hence investigates the morphology of precipitating marine cumulus convection using large-eddy-simulation experiments with zonal forward and backward shear and without shear. One set of simulations includes evaporation of precipitation, promoting cold-pool development, and another set inhibits the evaporation of precipitation and thus cold-pool formation. Without (or with only weak) subcloud-layer shear, conditions are unfavorable for convective deepening, as clouds remain stationary relative to their subcloud-layer roots so that precipitative downdrafts interfere with emerging updrafts. Under subcloud-layer forward shear (FS), where the wind strengthens with height (a condition that is commonly found in the trades), clouds move at greater speed than their roots and precipitation falls downwind away from emerging updrafts. FS in the subcloud layer appears to promote the development of stronger subcloud circulations, with greater divergence in the cold-pool area downwind of the original cell and larger convergence and stronger uplift at the gust front boundary. As clouds shear forward, a larger fraction of precipitation falls outside of clouds, leading to more moistening within the cold pool (gust front).

Original languageEnglish
Article numbere2021JD035148
Pages (from-to)1-15
Number of pages15
JournalJournal of Geophysical Research: Atmospheres
Volume126
Issue number20
DOIs
Publication statusPublished - 2021

Keywords

  • congestus
  • large-eddy-simulation
  • precipitation
  • shallow convection
  • trade wind
  • wind shear

Fingerprint

Dive into the research topics of 'The Morphology of Simulated Trade-Wind Convection and Cold Pools Under Wind Shear'. Together they form a unique fingerprint.

Cite this