The Origins of [C II] Emission in Local Star-forming Galaxies

K. V. Croxall, J. D T Smith, E. Pellegrini, Brent Groves, Alberto Bolatto, Rodrigo Herrera-Camus, K. M. Sandstrom, Bruce Draine, M. G. Wolfire, Lee Armus, Mederic Boquien, B. Brandl, Daniel A. Dale, Maud Galametz, L. K. Hunt, R. C. Kennicutt, K. Kreckel, D. Rigopoulou, p van der werf, C Wilson

Research output: Contribution to journalArticleScientificpeer-review

48 Citations (Scopus)
34 Downloads (Pure)

Abstract

The [C ii] 158 μm fine-structure line is the brightest emission line observed in local star-forming galaxies. As a major coolant of the gas-phase interstellar medium, [C ii] balances the heating, including that due to far-ultraviolet photons, which heat the gas via the photoelectric effect. However, the origin of [C ii] emission remains unclear because C+ can be found in multiple phases of the interstellar medium. Here we measure the fractions of [C ii] emission originating in the ionized and neutral gas phases of a sample of nearby galaxies. We use the [N ii] 205 μm fine-structure line to trace the ionized medium, thereby eliminating the strong density dependence that exists in the ratio of [C ii]/[N ii] 122 μm. Using the FIR [C ii] and [N ii] emission detected by the KINGFISH (Key Insights on Nearby Galaxies: a Far- Infrared Survey with Herschel) and Beyond the Peak Herschel programs, we show that 60%-80% of [C ii] emission originates from neutral gas. We find that the fraction of [C ii] originating in the neutral medium has a weak dependence on dust temperature and the surface density of star formation, and has a stronger dependence on the gas-phase metallicity. In metal-rich environments, the relatively cooler ionized gas makes substantially larger contributions to total [C ii] emission than at low abundance, contrary to prior expectations. Approximate calibrations of this metallicity trend are provided.

Original languageEnglish
Article number96
Number of pages7
JournalThe Astrophysical Journal: an international review of astronomy and astronomical physics
Volume845
Issue number2
DOIs
Publication statusPublished - 20 Aug 2017

Keywords

  • galaxies: ISM
  • ISM: lines and bands

Fingerprint

Dive into the research topics of 'The Origins of [C II] Emission in Local Star-forming Galaxies'. Together they form a unique fingerprint.

Cite this