The road to OLFAR - A roadmap to interferometric long-wavelength radio astronomy using miniaturized distributed space systems

Steven Engelen, Kevin A. Quillien, Chris Verhoeven, Arash Noroozi, Prem Sundaramoorthy, Alle Jan Van Der Veen, Raj Thilak Rajan, Albert Jan Boonstra, Mark Bentum, Arjan Meijerink, Alex Budianu

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

3 Citations (Scopus)

Abstract

The Orbiting Low Frequency Antennas for Radio Astronomy (OLFAR) project aims to develop a space-based low frequency radio telescope that will explore the universe's so-called dark ages, map the interstellar medium, and discover planetary and solar bursts in other solar systems. The telescope, composed of a swarm of at least fifty satellites working as a single instrument, will be sent to a location far from Earth in order to avoid the high Radio Frequency Interference (RFI) found at frequencies below 30 MHz, originating from Earth. The OLFAR telescope is a novel and complex system, requiring not-yet proven technologies and systems, therefore, a number of key technologies are still to be developed and proven. Most of these can be tested on Earth, but four aspects in particular require in-space verification. Those are (1) the satellite's propulsion and attitude control systems, and (2) their interactions with the large science antennas, as well as the (3) payload system itself and finally (4) the in-space interferometry and 3D-imaging. Furthermore, the RFI environment in the intended target orbits is mostly unknown. Indeed, only three satellites missions have previously been launched into orbit shedding light on the RFI environment, but sufficiently detailed measurements allowing for the creation of a usable RFI model have never been performed. To carry out both the hardware qualification and RFI measurements, a few pathfinder missions are deemed in order. This paper describes these pathfinders in detail; outlining the scientific objective, the technologies being demonstrated as well as the missions' roadmap which revolves around a novel systems engineering approach. This approach resembles those used in certain fast-paced industries where development is heavily parallelised and products are launched as soon as opportunities arise. This will be combined with in-space upgrading of mission firmware to allow for high flexibility within the limited time and budget constraints of these pathfinders. Copyright

Original languageEnglish
Title of host publication64th International Astronautical Congress 2013, IAC 2013
PublisherInternational Astronautical Federation, IAF
Pages4357-4363
Number of pages7
ISBN (Print)9781629939094
Publication statusPublished - 2013
Event64th International Astronautical Congress 2013, IAC 2013 - Beijing, China
Duration: 23 Sep 201327 Sep 2013

Publication series

NameProceedings of the International Astronautical Congress, IAC
Volume6
ISSN (Print)0074-1795

Conference

Conference64th International Astronautical Congress 2013, IAC 2013
Country/TerritoryChina
CityBeijing
Period23/09/1327/09/13

Fingerprint

Dive into the research topics of 'The road to OLFAR - A roadmap to interferometric long-wavelength radio astronomy using miniaturized distributed space systems'. Together they form a unique fingerprint.

Cite this