The role and value of distributed precipitation data in hydrological models

Ralf Loritz*, Markus Hrachowitz, Malte Neuper, Erwin Zehe

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

17 Citations (Scopus)
92 Downloads (Pure)

Abstract

This study investigates the role and value of distributed rainfall for the runoff generation of a mesoscale catchment (20 km2). We compare four hydrological model setups and show that a distributed model setup driven by distributed rainfall only improves the model performances during certain periods. These periods are dominated by convective summer storms that are typically characterized by higher spatiotemporal variabilities compared to stratiform precipitation events that dominate rainfall generation in winter. Motivated by these findings, we develop a spatially adaptive model that is capable of dynamically adjusting its spatial structure during model execution. This spatially adaptive model allows the varying relevance of distributed rainfall to be represented within a hydrological model without losing predictive performance compared to a fully distributed model. Our results highlight that spatially adaptive modeling has the potential to reduce computational times as well as improve our understanding of the varying role and value of distributed precipitation data for hydrological models.

Original languageEnglish
Article number147
Pages (from-to)147-167
Number of pages21
JournalHydrology and Earth System Sciences
Volume25
Issue number1
DOIs
Publication statusPublished - 2021

Fingerprint

Dive into the research topics of 'The role and value of distributed precipitation data in hydrological models'. Together they form a unique fingerprint.

Cite this