TY - JOUR
T1 - The wave-induced flow of internal gravity wavepackets with arbitrary aspect ratio
AU - Van Den Bremer, T. S.
AU - Sutherland, B. R.
PY - 2018/1/10
Y1 - 2018/1/10
N2 - We examine the wave-induced flow of small-amplitude, quasi-monochromatic, three-dimensional, Boussinesq internal gravity wavepackets in a uniformly stratified ambient. It has been known since Bretherton (J. Fluid Mech., vol. 36 (4), 1969, pp. 785-803) that one-, two- and three-dimensional wavepackets induce qualitatively different flows. Whereas the wave-induced mean flow for compact three-dimensional wavepackets consists of a purely horizontal localized circulation that translates with and around the wavepacket, known as the Bretherton flow, such a flow is prohibited for a two-dimensional wavepacket of infinite spanwise extent, which instead induces a non-local internal wave response that is long compared with the streamwise extent of the wavepacket. One-dimensional (horizontally periodic) wavepackets induce a horizontal, non-divergent unidirectional flow. Through perturbation theory for quasi-monochromatic wavepackets of arbitrary aspect ratio, we predict for which aspect ratios which type of induced mean flow dominates. We compose a regime diagram that delineates whether the induced flow is comparable to that of one-, two- or compact three-dimensional wavepackets. The predictions agree well with the results of fully nonlinear three-dimensional numerical simulations.
AB - We examine the wave-induced flow of small-amplitude, quasi-monochromatic, three-dimensional, Boussinesq internal gravity wavepackets in a uniformly stratified ambient. It has been known since Bretherton (J. Fluid Mech., vol. 36 (4), 1969, pp. 785-803) that one-, two- and three-dimensional wavepackets induce qualitatively different flows. Whereas the wave-induced mean flow for compact three-dimensional wavepackets consists of a purely horizontal localized circulation that translates with and around the wavepacket, known as the Bretherton flow, such a flow is prohibited for a two-dimensional wavepacket of infinite spanwise extent, which instead induces a non-local internal wave response that is long compared with the streamwise extent of the wavepacket. One-dimensional (horizontally periodic) wavepackets induce a horizontal, non-divergent unidirectional flow. Through perturbation theory for quasi-monochromatic wavepackets of arbitrary aspect ratio, we predict for which aspect ratios which type of induced mean flow dominates. We compose a regime diagram that delineates whether the induced flow is comparable to that of one-, two- or compact three-dimensional wavepackets. The predictions agree well with the results of fully nonlinear three-dimensional numerical simulations.
KW - internal waves
KW - stratified flows
UR - http://www.scopus.com/inward/record.url?scp=85034604076&partnerID=8YFLogxK
U2 - 10.1017/jfm.2017.745
DO - 10.1017/jfm.2017.745
M3 - Article
AN - SCOPUS:85034604076
VL - 834
SP - 385
EP - 408
JO - Journal of Fluid Mechanics
JF - Journal of Fluid Mechanics
SN - 0022-1120
ER -