TY - JOUR
T1 - Thermal fluctuations in capillary thinning of thin liquid films
AU - Shah, Maulik S.
AU - Van Steijn, Volkert
AU - Kleijn, Chris R.
AU - Kreutzer, Michiel T.
PY - 2019
Y1 - 2019
N2 - Thermal fluctuations have been shown to influence the thinning dynamics of planar thin liquid films, bringing predicted rupture times closer to experiments. Most liquid films in nature and industry are, however, non-planar. Thinning of such films not just results from the interplay between stabilizing surface tension forces and destabilizing van der Waals forces, but also from drainage due to curvature differences. This work explores the influence of thermal fluctuations on the dynamics of thin non-planar films subjected to drainage, with their dynamics governed by two parameters: The strength of thermal fluctuations, , and the strength of drainage, . For strong drainage , we find that the film ruptures due to the formation of a local depression called a dimple that appears at the connection between the curved and flat parts of the film. For this dimple-dominated regime, the rupture time, , solely depends on , according to the earlier reported scaling, . By contrast, for weak drainage , the film ruptures at a random location due to the spontaneous growth of fluctuations originating from thermal fluctuations. In this fluctuations-dominated regime, the rupture time solely depends on as , with . This scaling is rationalized using linear stability theory, which yields as the growth rate of the fastest-growing wave and . These insights on if, when and how thermal fluctuations play a role are instrumental in predicting the dynamics and rupture time of non-flat draining thin films.
AB - Thermal fluctuations have been shown to influence the thinning dynamics of planar thin liquid films, bringing predicted rupture times closer to experiments. Most liquid films in nature and industry are, however, non-planar. Thinning of such films not just results from the interplay between stabilizing surface tension forces and destabilizing van der Waals forces, but also from drainage due to curvature differences. This work explores the influence of thermal fluctuations on the dynamics of thin non-planar films subjected to drainage, with their dynamics governed by two parameters: The strength of thermal fluctuations, , and the strength of drainage, . For strong drainage , we find that the film ruptures due to the formation of a local depression called a dimple that appears at the connection between the curved and flat parts of the film. For this dimple-dominated regime, the rupture time, , solely depends on , according to the earlier reported scaling, . By contrast, for weak drainage , the film ruptures at a random location due to the spontaneous growth of fluctuations originating from thermal fluctuations. In this fluctuations-dominated regime, the rupture time solely depends on as , with . This scaling is rationalized using linear stability theory, which yields as the growth rate of the fastest-growing wave and . These insights on if, when and how thermal fluctuations play a role are instrumental in predicting the dynamics and rupture time of non-flat draining thin films.
KW - breakup/coalescence
KW - thin films
UR - http://www.scopus.com/inward/record.url?scp=85070812522&partnerID=8YFLogxK
U2 - 10.1017/jfm.2019.595
DO - 10.1017/jfm.2019.595
M3 - Article
AN - SCOPUS:85070812522
SN - 0022-1120
VL - 876
SP - 1090
EP - 1107
JO - Journal of Fluid Mechanics
JF - Journal of Fluid Mechanics
ER -