Thermophysical Properties and Phase Behavior of CO2 with Impurities: Insight from Molecular Simulations

D. Raju, M. Ramdin, T. J.H. Vlugt*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

14 Downloads (Pure)

Abstract

Experimentally determining thermophysical properties for various compositions commonly found in CO2 transportation systems is extremely challenging. To overcome this challenge, we performed Monte Carlo (MC) and Molecular Dynamics (MD) simulations of CO2 rich mixtures to compute thermophysical properties such as densities, thermal expansion coefficients, isothermal compressibilities, heat capacities, Joule-Thomson coefficients, speed of sound, and viscosities at temperatures of (235-313) K and pressures of (20-200) bar. We computed thermophysical properties of pure CO2 and CO2 rich mixtures with N2, Ar, H2, and CH4 as impurities of (1-10) mol % and showed good agreement with available Equations of State (EoS). We showed that impurities decrease the values of thermal expansion coefficients, isothermal compressibilities, heat capacities, and Joule-Thomson coefficients in the gas phase, while these values increase in the liquid and supercritical phases. In contrast, impurities increase the value of speed of sound in the gas phase and decrease it in the liquid and supercritical phases. We present an extensive data set of thermophysical properties for CO2 rich mixtures with various impurities, which will help to design the safe and efficient operation of CO2 transportation systems.

Original languageEnglish
Pages (from-to)2735-2755
Number of pages21
JournalJournal of Chemical and Engineering Data
Volume69
Issue number8
DOIs
Publication statusPublished - 2024

Fingerprint

Dive into the research topics of 'Thermophysical Properties and Phase Behavior of CO2 with Impurities: Insight from Molecular Simulations'. Together they form a unique fingerprint.

Cite this