Three-dimensional reacting shock–bubble interaction

Felix Diegelmann, Stefan Hickel, Nikolaus A. Adams

Research output: Contribution to journalArticleScientificpeer-review

12 Citations (Scopus)
72 Downloads (Pure)

Abstract

We investigate a reacting shock–bubble interaction through three-dimensional numerical simulations with detailed chemistry. The convex shape of the bubble focuses the shock and generates regions of high pressure and temperature, which are sufficient to ignite the diluted stoichiometric H2−O2 gas mixture inside the bubble. We study the interaction between hydrodynamic instabilities and shock-induced reaction waves at a shock Mach number of Ma=2.83. The chosen shock strength ignites the gas mixture before the shock-focusing point, followed by a detonation wave, which propagates through the entire bubble gas. The reaction wave has a significant influence on the spatial and temporal evolution of the bubble. The misalignment of density and pressure gradients at the bubble interface, caused by the initial shock wave and the subsequent detonation wave, induces Richtmyer–Meshkov and Kelvin–Helmholtz instabilities. The growth of the instabilities is highly affected by the reaction wave, which significantly reduces mixing compared to an inert shock–bubble interaction. A comparison with two-dimensional simulations reveals the influence of three-dimensional effects on the bubble evolution, especially during the late stages. The numerical results reproduce experimental data in terms of ignition delay time, reaction wave speed and spatial expansion rate of the bubble gas. We observe only a slight divergence of the spatial expansion in the long-term evolution.

Original languageEnglish
Pages (from-to)1339-1351
Number of pages13
JournalCombustion and Flame
Volume181
DOIs
Publication statusPublished - 1 Jul 2017

Keywords

  • Detonation
  • Richtmyer-Meshkov instability
  • Shock wave
  • Shock-bubble interaction
  • Shock-induced ignition
  • Shock-induced mixing

Fingerprint Dive into the research topics of 'Three-dimensional reacting shock–bubble interaction'. Together they form a unique fingerprint.

  • Cite this