Three-terminal energy harvester with coupled quantum dots

Holger Thierschmann*, Rafael Sánchez, Björn Sothmann, Fabian Arnold, Christian Heyn, Wolfgang Hansen, Hartmut Buhmann, Laurens W. Molenkamp

*Corresponding author for this work

    Research output: Contribution to journalArticleScientificpeer-review

    158 Citations (Scopus)


    Rectification of thermal fluctuations in mesoscopic conductors is the key idea behind recent attempts to build nanoscale thermoelectric energy harvesters to convert heat into useful electric power. So far, most concepts have made use of the Seebeck effect in a two-terminal geometry, where heat and charge are both carried by the same particles. Here, we experimentally demonstrate the working principle of a new kind of energy harvester, proposed recently, using two capacitively coupled quantum dots. We show that, due to the novel three-terminal design of our device, which spatially separates the heat reservoir from the conductor circuit, the directions of charge and heat flow become decoupled. This enables us to manipulate the direction of the generated charge current by means of external gate voltages while leaving the direction of heat flow unaffected. Our results pave the way for a new generation of multi-terminal nanoscale heat engines.

    Original languageEnglish
    Pages (from-to)854-858
    Number of pages5
    JournalNature Nanotechnology
    Issue number10
    Publication statusPublished - 1 Oct 2015


    Dive into the research topics of 'Three-terminal energy harvester with coupled quantum dots'. Together they form a unique fingerprint.

    Cite this