Time Series Analysis of 3D Coordinates Using Nonstochastic Observations

Hiddo Velsink*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

5 Citations (Scopus)
105 Downloads (Pure)


Adjustment and testing of a combination of stochastic and nonstochastic observations is applied to the deformation analysis of a time series of 3D coordinates. Nonstochastic observations are constant values that are treated as if they were observations. They are used to formulate constraints on the unknown parameters of the adjustment problem. Thus they describe deformation patterns. If deformation is absent, the epochs of the time series are supposed to be related via affine, similarity or congruence transformations. S-basis invariant testing of deformation patterns is treated. The model is experimentally validated by showing the procedure for a point set of 3D coordinates, determined from total station measurements during five epochs. The modelling of two patterns, the movement of just one point in several epochs, and of several points, is shown. Full, rank deficient covariance matrices of the 3D coordinates, resulting from free network adjustments of the total station measurements of each epoch, are used in the analysis.

Original languageEnglish
Pages (from-to)5-16
JournalJournal of Applied Geodesy
Issue number1
Publication statusPublished - 1 Mar 2016


  • 3D Coordinates
  • Full
  • Geodetic Deformation Analysis
  • Nonstochastic Observations
  • S-basis Invariant Testing
  • Singular Covariance Matrices
  • Time Series


Dive into the research topics of 'Time Series Analysis of 3D Coordinates Using Nonstochastic Observations'. Together they form a unique fingerprint.

Cite this