Time, temperature and concentration resolved Yb3+ luminescence study in co-sputtered Cu2-xGaxS2 (0.1 < x < 1.6) thin films with a Cu–Ga composition gradient

Max Derksen*, Sem Bergkamp, Olivia Kohnstamm, Erik van der Kolk

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

45 Downloads (Pure)

Abstract

The broad class of Cu(Al,Ga,In) (S,Se,Te)2 solar absorber materials when doped with Yb3+ are interesting for thin film based luminescent solar concentrator (LSC's) application. In this work the strong and broad absorption properties of co-sputtered CuGaS2 (CGS) thin films combined with the luminescent properties of Yb are reported. Energy-dispersive x-ray spectroscopy (EDS), x-ray diffraction, transmission, excitation, and temperature dependent emission as well as radiative lifetime measurements are performed on thin films with varying Cu:Ga ratios and Yb3+ concentrations. It is found that Yb3+ emission can be broadly sensitized by the host in the range of 200–600 nm. A lower Cu:Ga ratio, crystallinity and post annealing in air provides a positive impact on the sensitization of Yb3+ emission. The temperature dependent time integrated decay curves show a clear thermal energy barrier of about 0.2 eV. Because the exponential tail, with a lifetime of 110 μs, is constant with temperature, we conclude that the barrier is connected to the thermal release of electrons trapped at the Yb2+ ground state. The low energy transfer efficiency from the host to the Yb dopant is attributed to efficient non-radiative electron-hole pair recombination. The prospects and design criteria of Cu(Al,Ga,In) (S,Se,Te)2 solar absorber materials for LSC applications is the further subject of the discussion.
Original languageEnglish
Article number116220
Number of pages11
JournalOptical Materials
Volume157
DOIs
Publication statusPublished - 2024

Keywords

  • Charge trapping mediated energy transfer
  • Combinatorial sputtering
  • CuGaS2:Yb3+ photoluminescence
  • Host sensitized emission
  • Thin film luminescent solar concentrator

Fingerprint

Dive into the research topics of 'Time, temperature and concentration resolved Yb3+ luminescence study in co-sputtered Cu2-xGaxS2 (0.1 < x < 1.6) thin films with a Cu–Ga composition gradient'. Together they form a unique fingerprint.

Cite this