Topology-Driven Parallel Trajectory Optimization in Dynamic Environments

Research output: Contribution to journalArticleScientificpeer-review

Abstract

Ground robots navigating in complex, dynamic environments must compute collision-free trajectories to avoid obstacles safely and efficiently. Nonconvex optimization is a popular method to compute a trajectory in real-time. However, these methods often converge to locally optimal solutions and frequently switch between different local minima, leading to inefficient and unsafe robot motion. In this work, we propose a novel topology-driven trajectory optimization strategy for dynamic environments that plans multiple distinct evasive trajectories to enhance the robot's behavior and efficiency. A global planner iteratively generates trajectories in distinct homotopy classes. These trajectories are then optimized by local planners working in parallel. While each planner shares the same navigation objectives, they are locally constrained to a specific homotopy class, meaning each local planner attempts a different evasive maneuver. The robot then executes the feasible trajectory with the lowest cost in a receding horizon manner. We demonstrate, on a mobile robot navigating among pedestrians, that our approach leads to faster trajectories than existing planners.

Original languageEnglish
Pages (from-to)110-126
Number of pages17
JournalIEEE Transactions on Robotics
Volume41
DOIs
Publication statusPublished - 2024

Bibliographical note

Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Keywords

  • Collision avoidance
  • constrained motion planning
  • motion and path planning
  • optimization and optimal control

Fingerprint

Dive into the research topics of 'Topology-Driven Parallel Trajectory Optimization in Dynamic Environments'. Together they form a unique fingerprint.

Cite this