Abstract
We present a voice conversion framework that converts normal speech into dysarthric speech while preserving the speaker identity. Such a framework is essential for (1) clinical decision making processes and alleviation of patient stress, (2) data augmentation for dysarthric speech recognition. This is an especially challenging task since the converted samples should capture the severity of dysarthric speech while being highly natural and possessing the speaker identity of the normal speaker. To this end, we adopted a two-stage framework, which consists of a sequence-to-sequence model and a nonparallel frame-wise model. Objective and subjective evaluations were conducted on the UASpeech dataset, and results showed that the method was able to yield reasonable naturalness and capture severity aspects of the pathological speech. On the other hand, the similarity to the normal source speaker’s voice was limited and requires further improvements.
Original language | English |
---|---|
Title of host publication | Proceedings of the ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) |
Place of Publication | Piscataway |
Publisher | IEEE |
Pages | 6672-6676 |
Number of pages | 5 |
ISBN (Electronic) | 978-1-6654-0540-9 |
ISBN (Print) | 978-1-6654-0541-6 |
DOIs | |
Publication status | Published - 2022 |
Event | ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) - Singapore, Singapore Duration: 23 May 2022 → 27 May 2022 |
Conference
Conference | ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) |
---|---|
Country/Territory | Singapore |
City | Singapore |
Period | 23/05/22 → 27/05/22 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- voice conversion
- pathological speech
- dysarthric speech
- sequence-to-sequence modeling
- autoencoder