Transition and Turbulence Modeling for the Prediction of Cavitating Tip Vortices

Rens Liebrand, Maarten Klapwijk, Thomas Lloyd, Guilherme Vaz

Research output: Contribution to journalArticleScientificpeer-review

Abstract

This study evaluates the influence of transition and turbulence modeling on the prediction of wetted and cavitating tip vortices for an elliptical wing, while investigating the numerical errors. Transition modeling increases the quality of numerical predictions since the assumption of a fully turbulent boundary layer, commonly found in literature, contributes to underprediction of the tip vortex cavity size. By applying the local correlation-based transition model (LCTM) and controlling the boundary layer thickness using different turbulent inflow conditions, the pressure in the vortex was found to reduce by 20% for an Angle of Attack (AoA) of 5 deg. The consequent increase in cavity size was found to be of a similar order of magnitude. At 9 deg AoA, transition always occurs just downstream of the leading edge, making this AoA more suitable to investigate the effect of different turbulence modeling approaches. Azimuthal and axial velocity fields are validated against stereographic-particle image velocimetry (S-PIV) measurements. The time-averaged velocity profiles predicted by delayed detached-eddy simulation (DDES) and improved delayed detached-eddy simulation (IDDES) are close to the experiments; however, no velocity fluctuations and vortex dynamics are observed around the vortex. A comparison of wetted and cavitating simulations shows that the cavity leads to a change in the balance between production and destruction of turbulence kinetic energy, which reduces the turbulent diffusion in and around the cavity compared to wetted flow conditions. Consequently, the vapor flow exhibits the characteristics of a potential flow. Whether this is physically plausible remains to be investigated.

Original languageEnglish
Article number011202
Number of pages14
JournalJournal of Fluids Engineering, Transactions of the ASME
Volume143
Issue number1
DOIs
Publication statusPublished - 2021

Fingerprint Dive into the research topics of 'Transition and Turbulence Modeling for the Prediction of Cavitating Tip Vortices'. Together they form a unique fingerprint.

Cite this