Abstract
The X-ray Integral Field Unit (X-IFU) is an imaging spectrometer based on a large array of Transition Edge Sensors (TES) measured using Time Domain Multiplexing (TDM). For the development of a backup detector array, we have designed and realized a cryogenic test setup capable of measuring 9 detectors in a single cooldown under DC bias. We have used this setup to study a small selection of low aspect ratio TES designs, intended to have a low normal resistance suitable for TDM readout. In this work we show how the different designs are affected by magnetic fields. We do this by presenting the impact on the transition shape, detector integrated Noise Equivalent Power (NEP), and sensitivity of the energy scale calibration. We find, in agreement with previous studies, that reducing the width of the TES bilayer greatly improves the detector resilience to magnetic fields, potentially by several orders of magnitude.
Original language | English |
---|---|
Article number | 2100505 |
Number of pages | 5 |
Journal | IEEE Transactions on Applied Superconductivity |
Volume | 35 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2025 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- superconducting device noise
- Superconducting photodetectors
- X-ray detectors