Transitions in the wintertime near-surface temperature inversion at Dome C, Antarctica

Peter Baas*, Bas J.H. van de Wiel, Erik van Meijgaard, Etienne Vignon, Christophe Genthon, Steven J.A. van der Linden, Stephan R. de Roode

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

23 Citations (Scopus)
164 Downloads (Pure)

Abstract

In this work we study the dynamics of the surface-based temperature inversion over the Antarctic Plateau during the polar winter. Using 6 years of observations from the French–Italian Antarctic station Concordia at Dome C, we investigate sudden regime transitions in the strength of the near-surface temperature inversion. Here we define “near-surface” as being within the domain of the 45-m measuring tower. In particular, we consider the strongly nonlinear relation between the 10-m inversion strength (T 10m – T s ) and the 10-m wind speed. To this end, all individual events for which the 10-m inversion strength increases or decreases continuously by more than 15 K in time are considered. Composite time series and vertical profiles of wind and temperature reveal specific characteristics of the transition from weak to very strong inversions and vice versa. In contrast to midlatitudes, the largest variations in temperature are not found at the surface but at a height of 10 m. A similar analysis was performed on results from an atmospheric single-column model (SCM). Overall, the SCM results reproduce the observed characteristics of the transitions in the near-surface inversion remarkably well. Using model output, the underlying mechanisms of the regime transitions are identified. The nonlinear relation between inversion strength and wind speed at a given level is explained by variations in the geostrophic wind speed, changes in the depth of the turbulent layer and the vertical divergence of turbulent fluxes. Moreover, the transitions between different boundary layer regimes cannot be explained without considering the contribution of subsidence heating.

Original languageEnglish
Pages (from-to)930-946
Number of pages17
JournalQuarterly Journal of the Royal Meteorological Society
Volume145
Issue number720
DOIs
Publication statusPublished - 2019

Keywords

  • Antarctic atmosphere
  • observational data analysis
  • regime transition
  • single-column model
  • stable boundary layer

Fingerprint

Dive into the research topics of 'Transitions in the wintertime near-surface temperature inversion at Dome C, Antarctica'. Together they form a unique fingerprint.

Cite this