TY - JOUR
T1 - Transitions in the wintertime near-surface temperature inversion at Dome C, Antarctica
AU - Baas, Peter
AU - van de Wiel, Bas J.H.
AU - van Meijgaard, Erik
AU - Vignon, Etienne
AU - Genthon, Christophe
AU - van der Linden, Steven J.A.
AU - de Roode, Stephan R.
PY - 2019
Y1 - 2019
N2 -
In this work we study the dynamics of the surface-based temperature inversion over the Antarctic Plateau during the polar winter. Using 6 years of observations from the French–Italian Antarctic station Concordia at Dome C, we investigate sudden regime transitions in the strength of the near-surface temperature inversion. Here we define “near-surface” as being within the domain of the 45-m measuring tower. In particular, we consider the strongly nonlinear relation between the 10-m inversion strength (T
10m
– T
s
) and the 10-m wind speed. To this end, all individual events for which the 10-m inversion strength increases or decreases continuously by more than 15 K in time are considered. Composite time series and vertical profiles of wind and temperature reveal specific characteristics of the transition from weak to very strong inversions and vice versa. In contrast to midlatitudes, the largest variations in temperature are not found at the surface but at a height of 10 m. A similar analysis was performed on results from an atmospheric single-column model (SCM). Overall, the SCM results reproduce the observed characteristics of the transitions in the near-surface inversion remarkably well. Using model output, the underlying mechanisms of the regime transitions are identified. The nonlinear relation between inversion strength and wind speed at a given level is explained by variations in the geostrophic wind speed, changes in the depth of the turbulent layer and the vertical divergence of turbulent fluxes. Moreover, the transitions between different boundary layer regimes cannot be explained without considering the contribution of subsidence heating.
AB -
In this work we study the dynamics of the surface-based temperature inversion over the Antarctic Plateau during the polar winter. Using 6 years of observations from the French–Italian Antarctic station Concordia at Dome C, we investigate sudden regime transitions in the strength of the near-surface temperature inversion. Here we define “near-surface” as being within the domain of the 45-m measuring tower. In particular, we consider the strongly nonlinear relation between the 10-m inversion strength (T
10m
– T
s
) and the 10-m wind speed. To this end, all individual events for which the 10-m inversion strength increases or decreases continuously by more than 15 K in time are considered. Composite time series and vertical profiles of wind and temperature reveal specific characteristics of the transition from weak to very strong inversions and vice versa. In contrast to midlatitudes, the largest variations in temperature are not found at the surface but at a height of 10 m. A similar analysis was performed on results from an atmospheric single-column model (SCM). Overall, the SCM results reproduce the observed characteristics of the transitions in the near-surface inversion remarkably well. Using model output, the underlying mechanisms of the regime transitions are identified. The nonlinear relation between inversion strength and wind speed at a given level is explained by variations in the geostrophic wind speed, changes in the depth of the turbulent layer and the vertical divergence of turbulent fluxes. Moreover, the transitions between different boundary layer regimes cannot be explained without considering the contribution of subsidence heating.
KW - Antarctic atmosphere
KW - observational data analysis
KW - regime transition
KW - single-column model
KW - stable boundary layer
UR - http://www.scopus.com/inward/record.url?scp=85062701307&partnerID=8YFLogxK
U2 - 10.1002/qj.3450
DO - 10.1002/qj.3450
M3 - Article
AN - SCOPUS:85062701307
SN - 0035-9009
VL - 145
SP - 930
EP - 946
JO - Quarterly Journal of the Royal Meteorological Society
JF - Quarterly Journal of the Royal Meteorological Society
IS - 720
ER -