TY - JOUR
T1 - Translation of 3D Anatomy to 2D Radiographic Angle Measurements in the Ankle Joint
T2 - Validity and Reliability
AU - Vuurberg, Gwendolyn
AU - Tümer, Nazli
AU - Sierevelt, Inger
AU - Dobbe, Johannes G.G.
AU - Hemke, Robert
AU - Wiegerinck, Jan Joost
AU - Maas, Mario
AU - Kerkhoffs, Gino M.M.J.
AU - Tuijthof, Gabriëlle J.M.
PY - 2022
Y1 - 2022
N2 - Background: The objective consisted of 2 elements, primarily to define 2 bone geometry variations of the ankle that may be of prognostic value on ankle instability and secondly to translate these bone variations from a 3D model to a simple 2D radiographic measurement for clinical use. Methods: The 3D tibial and talar shape differences derived from earlier studies were translated to two 2D radiographic parameters: the medial malleolar height angle (MMHA) and talar convexity angle (TCA) respectively to ensure clinical use. To assess validity, the MMHA and TCA were measured on 3D polygons derived from lower leg computed tomographic (CT) scans and 2D digitally reconstructed radiographs (DRRs) of these polygons. To assess reliability, the MMHA and TCA were measured on standard radiographs by 2 observers calculating the intraclass correlation coefficient (ICC). Results: The 3D angle measurements on the polygons showed substantial to excellent agreement with the 2D measurements on DRR for both the MMHA (ICC 0.84-0.93) and TCA (ICC 0.88-0.96). The interobserver reliability was moderate with an ICC of 0.58 and an ICC of 0.64 for both the MMHA and TCA, respectively. The intraobserver reliability was excellent with an ICC of 0.96 and 0.97 for the MMHA and the TCA, respectively. Conclusion: Two newly defined radiographic parameters (MMHA and TCA) are valid and can be assessed with excellent intraobserver reliability on standard radiographs. The interobserver reliability was moderate and indicates training is required to ensure uniformity in measurement technique. The current method may be used to translate more variations in bone shape prior to implementation in clinical practice. Level of Evidence: Level III, cohort study.
AB - Background: The objective consisted of 2 elements, primarily to define 2 bone geometry variations of the ankle that may be of prognostic value on ankle instability and secondly to translate these bone variations from a 3D model to a simple 2D radiographic measurement for clinical use. Methods: The 3D tibial and talar shape differences derived from earlier studies were translated to two 2D radiographic parameters: the medial malleolar height angle (MMHA) and talar convexity angle (TCA) respectively to ensure clinical use. To assess validity, the MMHA and TCA were measured on 3D polygons derived from lower leg computed tomographic (CT) scans and 2D digitally reconstructed radiographs (DRRs) of these polygons. To assess reliability, the MMHA and TCA were measured on standard radiographs by 2 observers calculating the intraclass correlation coefficient (ICC). Results: The 3D angle measurements on the polygons showed substantial to excellent agreement with the 2D measurements on DRR for both the MMHA (ICC 0.84-0.93) and TCA (ICC 0.88-0.96). The interobserver reliability was moderate with an ICC of 0.58 and an ICC of 0.64 for both the MMHA and TCA, respectively. The intraobserver reliability was excellent with an ICC of 0.96 and 0.97 for the MMHA and the TCA, respectively. Conclusion: Two newly defined radiographic parameters (MMHA and TCA) are valid and can be assessed with excellent intraobserver reliability on standard radiographs. The interobserver reliability was moderate and indicates training is required to ensure uniformity in measurement technique. The current method may be used to translate more variations in bone shape prior to implementation in clinical practice. Level of Evidence: Level III, cohort study.
KW - bone geometry
KW - chronic ankle instability
KW - prognostic value
KW - radiographic parameters
KW - reliability analysis
UR - http://www.scopus.com/inward/record.url?scp=85135039243&partnerID=8YFLogxK
U2 - 10.1177/24730114221112945
DO - 10.1177/24730114221112945
M3 - Article
AN - SCOPUS:85135039243
SN - 2473-0114
VL - 7
JO - Foot and Ankle Orthopaedics
JF - Foot and Ankle Orthopaedics
IS - 3
ER -