TY - JOUR
T1 - Transport of silica encapsulated DNA microparticles in controlled instantaneous injection open channel experiments
AU - Tang, Yuchen
AU - Foppen, Jan Willem
AU - Bogaard, Thom A.
PY - 2021
Y1 - 2021
N2 - Surface water tracing is a widely used technique to investigate in-stream mass transport including contaminant migration. Recently, a microparticle tracer was developed with unique synthetic DNA encapsulated in an environmentally-friendly silica coating (Si-DNA microparticle). Previous tracing applications of such tracers reported detection and quantification, but a massive loss of tracer mass. However, the transport behavior of these DNA-tagged microparticle tracers has not been rigorously quantified and compared with that of solute tracers. Therefore, we compared the transport behavior of Si-DNA microparticles to the behavior of solute NaCl in 6 different, environmentally representative water types using breakthrough curves (BTCs), obtained from laboratory open channel injection experiments, whereby no Si-DNA microparticle tracer mass was lost. Hereafter, we modelled the BTCs using a 1-D advection-dispersion model with one transient storage zone (OTIS) by calibrating the hydrodynamic dispersion coefficient D and a storage zone exchange rate coefficient. We concluded that the transport behavior of Si-DNA microparticles resembled that of NaCl in surface-water relevant conditions, evidenced by BTCs with a similar range of D; however, the Si-DNA microparticle had a more erratic BTC than its solute counterpart, whereby the scatter increased as a function of water quality complexity. The overall larger confidence interval of DSi-DNA was attributed to the discrete nature of colloidal particles with a certain particle size distribution and possibly minor shear-induced aggregations. This research established a solid methodological foundation for field application of Si-DNA microparticles in surface water tracing, providing insight in transport behavior of equivalent sized and mass particles in rivers.
AB - Surface water tracing is a widely used technique to investigate in-stream mass transport including contaminant migration. Recently, a microparticle tracer was developed with unique synthetic DNA encapsulated in an environmentally-friendly silica coating (Si-DNA microparticle). Previous tracing applications of such tracers reported detection and quantification, but a massive loss of tracer mass. However, the transport behavior of these DNA-tagged microparticle tracers has not been rigorously quantified and compared with that of solute tracers. Therefore, we compared the transport behavior of Si-DNA microparticles to the behavior of solute NaCl in 6 different, environmentally representative water types using breakthrough curves (BTCs), obtained from laboratory open channel injection experiments, whereby no Si-DNA microparticle tracer mass was lost. Hereafter, we modelled the BTCs using a 1-D advection-dispersion model with one transient storage zone (OTIS) by calibrating the hydrodynamic dispersion coefficient D and a storage zone exchange rate coefficient. We concluded that the transport behavior of Si-DNA microparticles resembled that of NaCl in surface-water relevant conditions, evidenced by BTCs with a similar range of D; however, the Si-DNA microparticle had a more erratic BTC than its solute counterpart, whereby the scatter increased as a function of water quality complexity. The overall larger confidence interval of DSi-DNA was attributed to the discrete nature of colloidal particles with a certain particle size distribution and possibly minor shear-induced aggregations. This research established a solid methodological foundation for field application of Si-DNA microparticles in surface water tracing, providing insight in transport behavior of equivalent sized and mass particles in rivers.
KW - DNA
KW - Hydrodynamic dispersion
KW - Microparticle tracers
KW - Surface water
UR - http://www.scopus.com/inward/record.url?scp=85113488583&partnerID=8YFLogxK
U2 - 10.1016/j.jconhyd.2021.103880
DO - 10.1016/j.jconhyd.2021.103880
M3 - Article
AN - SCOPUS:85113488583
VL - 242
JO - Journal of Contaminant Hydrology
JF - Journal of Contaminant Hydrology
SN - 0169-7722
M1 - 103880
ER -