Transport Properties of an Electron-Hole Bilayer in Contact with a Superconductor Hybrid Junction

D Bercioux, T. M. Klapwijk, F. S. Bergeret

    Research output: Contribution to journalArticleScientificpeer-review

    4 Citations (Scopus)
    60 Downloads (Pure)

    Abstract

    We investigate the transport properties of a junction consisting of an electron-hole bilayer in contact with normal and superconducting leads. The electron-hole bilayer is considered as a semimetal with two electronic bands. We assume that in the region between the contacts the system hosts an exciton condensate described by a BCS-like model with a gap Γ in the quasiparticle density of states. We first discuss how the subgap electronic transport through the junction is mainly governed by the interplay between two kinds of reflection processes at the interfaces: the standard Andreev reflection at the interface between the superconductor and the exciton condensate, and a coherent crossed reflection at the semimetal-exciton-condensate interface that converts electrons from one layer into the other. We show that the differential conductance of the junction shows a minimum at voltages of the order of Γ/e. Such a minimum can be seen as a direct hallmark of the existence of the gapped excitonic state.

    Original languageEnglish
    Article number067001
    Number of pages5
    JournalPhysical Review Letters
    Volume119
    Issue number6
    DOIs
    Publication statusPublished - 7 Aug 2017

    Fingerprint

    Dive into the research topics of 'Transport Properties of an Electron-Hole Bilayer in Contact with a Superconductor Hybrid Junction'. Together they form a unique fingerprint.

    Cite this