TY - JOUR
T1 - Treatment of Source-Separated Human Feces via Lactic Acid Fermentation Combined with Thermophilic Composting
AU - Andreev, N.
AU - Ronteltap, M.
AU - Boincean, B.
AU - Lens, P. N.L.
PY - 2017/10/2
Y1 - 2017/10/2
N2 - Human feces from urine diverting dry toilets can serve as valuable soil conditioners. For a successful agricultural application, an efficient pathogen reduction needs to be ensured, with no negative effects on plants. This study assessed the efficiency of lacto-fermentation combined with thermophilic composting on pathogen removal from human feces and the post-treatment effects on germination and growth of radish (Raphanus sativus) and tomatoes (Lycopersicum esculentum) compared to lacto-fermentation combined with vermi-composting and the control. The NH4 +-N/NO3 −-N ratio of 3.0 and 3.6, respectively, suggested the obtained compost and vermi-compost was not yet mature. A complete reduction in the concentration of all investigated bacterial indicators (i.e., coliforms, Escherichia coli, Enterococcus faecalis, and Clostridium perfringens) from 5–7 log CFU g−1 to below detection limit (<3 log CFU g−1) was achieved after lacto-fermentation combined with thermophilic composting. Lacto-fermentation combined with vermi-composting also contributed to pathogen die-off, but coliform bacteria were reduced to only 5 log CFU g−1. Fertilization of seeds of radish by compost obtained after lacto-fermentation combined with thermophilic composting led to a higher germination index than by the vermicast obtained by lacto-fermentation and vermi-composting (90% versus 84%). Moreover, significantly bigger average fruit weight and total biomass per tomato plant (p < 0.05) were obtained after compost amendment compared to vermicast or the control.
AB - Human feces from urine diverting dry toilets can serve as valuable soil conditioners. For a successful agricultural application, an efficient pathogen reduction needs to be ensured, with no negative effects on plants. This study assessed the efficiency of lacto-fermentation combined with thermophilic composting on pathogen removal from human feces and the post-treatment effects on germination and growth of radish (Raphanus sativus) and tomatoes (Lycopersicum esculentum) compared to lacto-fermentation combined with vermi-composting and the control. The NH4 +-N/NO3 −-N ratio of 3.0 and 3.6, respectively, suggested the obtained compost and vermi-compost was not yet mature. A complete reduction in the concentration of all investigated bacterial indicators (i.e., coliforms, Escherichia coli, Enterococcus faecalis, and Clostridium perfringens) from 5–7 log CFU g−1 to below detection limit (<3 log CFU g−1) was achieved after lacto-fermentation combined with thermophilic composting. Lacto-fermentation combined with vermi-composting also contributed to pathogen die-off, but coliform bacteria were reduced to only 5 log CFU g−1. Fertilization of seeds of radish by compost obtained after lacto-fermentation combined with thermophilic composting led to a higher germination index than by the vermicast obtained by lacto-fermentation and vermi-composting (90% versus 84%). Moreover, significantly bigger average fruit weight and total biomass per tomato plant (p < 0.05) were obtained after compost amendment compared to vermicast or the control.
UR - http://www.scopus.com/inward/record.url?scp=85015679602&partnerID=8YFLogxK
U2 - 10.1080/1065657X.2016.1277809
DO - 10.1080/1065657X.2016.1277809
M3 - Article
AN - SCOPUS:85015679602
SN - 1065-657X
VL - 25
SP - 220
EP - 230
JO - Compost Science and Utilization
JF - Compost Science and Utilization
IS - 4
ER -