TY - JOUR
T1 - Trust in haptic assistance
T2 - Weighting visual and haptic cues based on error history
AU - Gibo, Tricia
AU - Mugge, Winfred
AU - Abbink, David
PY - 2017
Y1 - 2017
N2 - To effectively interpret and interact with the world, humans weight redundant estimates from different sensory cues to form one coherent, integrated estimate. Recent advancements in physical assistance systems, where guiding forces are computed by an intelligent agent, enable the presentation of augmented cues. It is unknown, however, if cue weighting can be extended to augmented cues. Previous research has shown that cue weighting is determined by the reliability (inversely related to uncertainty) of cues within a trial, yet augmented cues may also be affected by errors that vary over trials. In this study, we investigate whether people can learn to appropriately weight a haptic cue from an intelligent assistance system based on its error history. Subjects held a haptic device and reached to a hidden target using a visual (Gaussian distributed dots) and haptic (force channel) cue. The error of the augmented haptic cue varied from trial to trial based on a Gaussian distribution. Subjects learned to estimate the target location by weighting the visual and augmented haptic cues based on their perceptual uncertainty and experienced errors. With both cues available, subjects were able to find the target with an improved or equal performance compared to what was possible with one cue alone. Our results show that the brain can learn to reweight augmented cues from intelligent agents, akin to previous observations of the reweighting of naturally occurring cues. In addition, these results suggest that the weighting of a cue is not only affected by its within-trial reliability but also the history of errors.
AB - To effectively interpret and interact with the world, humans weight redundant estimates from different sensory cues to form one coherent, integrated estimate. Recent advancements in physical assistance systems, where guiding forces are computed by an intelligent agent, enable the presentation of augmented cues. It is unknown, however, if cue weighting can be extended to augmented cues. Previous research has shown that cue weighting is determined by the reliability (inversely related to uncertainty) of cues within a trial, yet augmented cues may also be affected by errors that vary over trials. In this study, we investigate whether people can learn to appropriately weight a haptic cue from an intelligent assistance system based on its error history. Subjects held a haptic device and reached to a hidden target using a visual (Gaussian distributed dots) and haptic (force channel) cue. The error of the augmented haptic cue varied from trial to trial based on a Gaussian distribution. Subjects learned to estimate the target location by weighting the visual and augmented haptic cues based on their perceptual uncertainty and experienced errors. With both cues available, subjects were able to find the target with an improved or equal performance compared to what was possible with one cue alone. Our results show that the brain can learn to reweight augmented cues from intelligent agents, akin to previous observations of the reweighting of naturally occurring cues. In addition, these results suggest that the weighting of a cue is not only affected by its within-trial reliability but also the history of errors.
KW - Cue weighting
KW - Sensory integration
KW - Haptics
KW - Haptic Assistance
KW - Error History
UR - http://resolver.tudelft.nl/uuid:16abd1b2-5128-4d9f-983c-f229d64427a8
U2 - 10.1007/s00221-017-4986-4
DO - 10.1007/s00221-017-4986-4
M3 - Article
VL - 235
SP - 2533
EP - 2546
JO - Experimental Brain Research
JF - Experimental Brain Research
SN - 0014-4819
IS - 8
ER -